The DLP on Elliptic Curves with the same order

Marios Magioladitis

University of Duisburg-Essen, IEM

January 15, 2008

M. Magioladitis (IEM)

The DLP on Elliptic Curves

January 15, 2008 1 / 9

Aim of the talk

Theorem of Tate Let *E* and *E'* be two elliptic curves over \mathbb{F}_q .

```
E and E' are isogenous \Leftrightarrow |E| = |E'|.
```

Main question

Consider E, E' isogenous elliptic curves.

$$DLP(E) \stackrel{?}{=} DLP(E')$$

Answer

Yes*

- Generalized Riemann hypothesis \checkmark
- The same endomorphism ring (technical) \checkmark

M. Magioladitis (IEM)

Question: Can we extend it for curves of genus 2? **Answer**: Hopefully, yes!

For genus > 1 we have to work with Jacobians.

Question: Can we extend it for curves of genus 3? **Answer**: No :(

- DLP in hyperelliptic case: $\tilde{O}(q^{4/3})$ group operations (Gaudry, Thomé, Thériault, Diem)
- **②** DLP in non-hyperelliptic case: $\tilde{O}(q)$ group operations (Diem's index calculus algorithm)
- S ∃ "many" (at least 18.78%) hyperelliptic curves of genus 3 with an explicit isogeny of small degree of their Jacobian to a Jacobian of a non-hyperelliptic curve. (Smith)

Let *E* and *E'* be two isogenous elliptic curves over \mathbb{F}_q .

E and *E'* belong to the same level \Leftrightarrow End (E) = End (E').

Corollary (Assuming GRH)

The DLP on elliptic curves is random reducible. Given any algorithm A that solves DLP on some fixed positive proportion of curves in a fixed level, then DLP can probabilistically solved on any given curve in the same level with polylog(q) expected queries to A with random inputs.

Sketch of the proof

Number and type of isogenies $E \rightarrow E'$ of degree ℓ

Kohel (1996)

Case	Туре	Subcase	Туре
ℓ ∦c _E	$1 + (rac{D}{\ell}) ightarrow$	$\ell \not c_{\pi}$	
		ℓc_{π}	$\ell - (rac{D}{\ell})\downarrow$
ℓc_E	1 ↑	$\ell \not \frac{c_{\pi}}{c_E}$	
		$\ell \frac{c_{\pi}}{c_E}$	$\ell\downarrow$

- $\mathbf{0} \downarrow [\operatorname{End}(\mathrm{E}) : \operatorname{End}(\mathrm{E}')] = \ell$
- ② ↑ $[End(E'): End(E)] = \ell$

Proposition

Let \mathcal{G} be a *k*-regular graph with *h* vertices. Suppose that the eigenvalue λ of any non-constant eigenvector satisfies the bound $|\lambda| \leq c$ for some c < k. Let *S* be any subset of the vertices of \mathcal{G} , and *x* be any vertex in \mathcal{G} . Then a random walk of any length at least $\frac{\log 2h/|S|^{1/2}}{\log k/c}$ starting from *x* will land in *S* with probability at least $\frac{|S|}{2h}$.

Theorem (Assuming GRH)

Let *E* be an elliptic curve of order *N* over \mathbb{F}_q . There exists a polynomial P(x), independent of *N* and *q*, s.t. for $P(\log q)$, the isogeny graph \mathcal{G} on each level is a nearly Ramanujan graph and any random walk on \mathcal{G} will reach a subset of size *h* with probability at least $\frac{h}{2|\mathcal{G}|}$ after polylog(*q*) steps.