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1 Basic notations

We use the following notation

∙ K denote a �nite extension of the p−adic numbers Qp.

∙ G be the group GL2(K).

∙ OK denotes the ring of integers in K.

∙ � is an uniformizing parameter for OK .

∙ ∣⋅ ∣ is the normalized p−adic absolute value on K extending the p−adic absolute
value on Qp.

∙ ! : K → ℤ ∪ {∞} is the additive valuation normalized so that !(�) = 1.

Let V be a �xed two dimensional vector space over K, viewed as a space of row

vectors, on which G acts on the left by the formula

g([x, y]) = [x, y]

(
a b

c d

)−1
ℙ1 will be ℙ(V ) with its G−action. Let V ∗ be the dual of V , consider e0 and e1

elements in V ∗ respect to the standard basis vectors [1, 0] and [0, 1] in V ; they are

homogeneous coordinates on ℙ1. A linear form in e0 and e1 is called unimodular if

at least one of its two coe�cients is a unit in OK .
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The coordinate function

z =
e0
e1

is acted on by a matrix g =

(
a b

c d

)
∈ G through the formula

g∗(z)([x, y]) = z(g−1([x, y]))

= z([x, y]g)

= z([ax+ cy, bx+ dy])

=
az + c

bz + d

2 The p-adic upper half plane

We want to study here the p-adic upper half plane X , an space whose L points are

given by the rule

X (L) = ℙ1(L) ∖ ℙ1(K)

for complete extensions �elds L of K.

De�nition 2.1. A connected a�noid subset of ℙ1 is the complement of any non-

empty �nite union of open disks. An a�noid subset of ℙ1 is a �nite union of con-

nected a�noid subsets.

De�nition 2.2. Given x ∈ ℙ1(ℂp) we may choose homogeneous coordinates [x0, x1]

for x that are unimodular meaning that both coordinates are integral, but at least one

is not divisible by �. For a real number r > 0, let

B−(x, r) = {y ∈ ℙ1(ℂp) : !(y0x1 − y1x0) > r}

where we always take a unimodular representative [y0, y1] of y.

De�nition 2.3. For each integer n > 0, let Pn be a set of representatives for the

points of ℙ1(K) modulo �n. Let X−n be the set

X−n := ℙ1(Cp) ∖
∪
x∈ℙn

B−(x, n− 1)
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Figure 1: Example
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Essencially X−n is constructed by deleting from ℙ1 smaller and smaller balls around

the rationals points.

De�nition 2.4. Ω ⊆ ℙ1 is an admissible subset if only if there exists an a�noid

covering {Ui}i∈I such that, for all a�noid U ⊂ Ω there exists In ⊂ I �nite such that

U ⊆
∪

i∈In Ui. Such a�noid covering is called an admissible covering.

Proposition 2.5. X =
∪

nX−n is an admissible open subdomain of ℙ1 and the cov-

erings by the familie {X−n }∞n=1 are admissible coverings.

2.1 The ring OX of entire functions on X

Consider the set

OX−
n

=
{
f : X−n → ℂp : such that ∃fm → f, fm is rational with poles outside of X−n

}

OX =
{
f : X → ℂp : such that f/X−n ∈ OX−

n
for all n

}
Remark 2.6. Here the norm for the convergence is the norm of the suprem.

Proposition 2.7. OX is a Fréchet space with this norm.

3 The Reduction Map

3.1 The Bruhat-Tits Tree

Now consider the �xed two dimensional vector V ∗ over K.

De�nition 3.1. A lattice L in V ∗ is a free rank two Ok module in V ∗. We de�ne

the following equivalence relation on the set of lattices in V ∗, L1 ∼ L2 if there is an

scalar a ∈ K such as L1 = aL2.

De�nition 3.2. Let X be the graph whose vertices are equivalence classes [L] of

lattices L ⊂ V ∗, where two vertices x and y are joined by an edge if x = [L1] and

y = [L2] with

�L1 ⊊ L2 ⊊ L1.
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Figure 2: Example

Proposition 3.3. The graph X is a homogeneous tree of degree q + 1.

Remark 3.4. The degree q + 1 means that in every vertice there are exactly q + 1

edges leaving and for a tree we means that the graph is connected and have no loops.

Proof. Degree q+ 1: Let [L1] a class of equivalence of [L2] is another vertex leaving

[L1] then

�L1 ⊊ L2 ⊊ L1 so {0} ⊊ L2/�L1 ⊊ L1/�L1 ≈ (Fq)
2

since dim (L2/�L1) = 1 it correspond to the one-dimensional subspaces in F2
q and

there are exactly q + 1, so the degree of X is q + 1.

Connected: Let [L] and [L′] two vertices suppose that L′ ⊊ L then a Jordan-Hölder

sequences for L/L′ gives a sequence of lattices

L′ = Ln ⊊ Ln−1 ⊊ . . . ⊊ L0 = L

such that l(Li−1/Li) = 1 for 1 ≤ i ≤ n and the classes [L0], [L1], . . . , [Ln] de�ne a

path between [L] and [L′].

X have no loops: Now suppose that X is not a tree, then a cycle in X should be

represented by a chain of lattices

Ld+1 = L′ ⊊ Ld ⊊ Ld−1 ⊊ . . . ⊊ L1 ⊊ L0 = L

minimal with no equivalent lattices, where L′ = �rL.

Considering the exact sequences

0→ Li/Li+1 → L/Li+1 → L/Li → 0
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if and fact that L/L′ is not a cyclic Ok− module we can prove that there is i0 such

that

i0 = min{i : L/Li is cyclic but L/Li+1 is not}

so Li0−1/Li0+1 is a non cyclic length two − Ok module and �nally Li0+1 = �Li0−1,

which is a contradiction.

In this way we have constructed a combinational object X. For a point x ∈ X on

the vertex determined by [L] and [L′] we can write x = (1− t)[L] + t[L′]; to indicate

that the point is at distance t from [L] in direction [L′]. In this way we can see each

edge of X as a copy of [0, 1] and we obtain a topological space called the realization

of X.

3.2 Norms

De�nition 3.5. A norm on V ∗ is a function  : V ∗ → ℝ ∪ {∞} such that

∙ (x) =∞ if and only if x = 0

∙ (ax) = !(a) + (x) for all a ∈ K

∙ (x+ y) ≥ inf{(x), (y)}

We say that 1 ∼ 2 if and only if 1 − 2 = c for some c ∈ ℝ.
Now to a point x ∈ X we associate an equivalence class of norms of V ∗. Here we

consider two cases:

Case 1 x is a vertex, in this case choose a lattice L = ⟨l0, l1⟩ and let

(al0 + bl1) = inf{!(a), !(b)}

or alternatively

(w) = − inf{n ∈ ℤ : �nw ∈ L}

Case 2 x lies on a edge, then x = (1 − t)[L] + t[L′] in this case choose L = ⟨l0, l1⟩
and by the Theorem of the principal divisors we can choose L′ = ⟨l0, �l1⟩ and de�ne

(al0 + bl1) = inf{!(a), !(b)− t}

Proposition 3.6. This construction establishes a bijection between the set of equiv-

alence classes of norms on V ∗ and the points of the space X.
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Proof. We will construct the inverse map of the construction given.

Let  be any norm on V ∗, suppose that ∃x ∈ V ∗ such that (x) = 0 (we can scale

 by translating it in its equivalence class). Choose a (�nite) set of representatives

R in L for the projective space P (L′/�L′). The norm is determined by its values on

elements of R, all of which lie in [0, 1).

Let w ∈ V ∗ such that w = u�mr + �m+1w′ with u ∈ O∗K and w′ ∈ L′. Then

(w) = m+ (r), if (r) = 0 for all r ∈ R then this norm comes from the case 1.

We can check also that norms equivalent to  have unit balls equivalent to L′, if

(r) > 0 the (r) is unique because if ∃r′ ∈ R such that (r′) > 0 then L′ = ⟨r, r′⟩
and (x) > 0 for all x ∈ L′, which is a contradiction. Then set L = L′ + r/� the

norm comes from the case 2 and t = 1 − (r); for equivalent norms the unit ball is

equivalent to L or L′.

3.3 Ends

De�nition 3.7. Let ([L0], [L1], . . .) be a in�nite non-Backtracking sequence of ad-

jacent vertices in which two sequences are equivalent if they di�er by �nite initial

sequence of vertices.

An equivalence class of such sequences is called an end of the tree. The set of

ends is denoted Ends(X) an represent the set of points at in�nity for the tree.

Given an end e = ⟨[L0], [L1], . . .⟩ we can construct a representing sequence of lattices

for the path

L0 ⊉ L1 ⊉ L2 ⊉ . . .

with the property that Li/Li+1
∼= OK/�OK

Lemma 3.8. The intersection of the lattices is a one dimensional subspace of V ∗

spanned by a linear form l.

Proof. Since the sequence has no backtracking using the same argument that we use

in the proof of the proposition that X is a tree we can prove that L0/Li is a cyclic

OK−module of lenght i ∀i ≥ 1 and the same is true for Li/�
iL0 so we may choose

li ∈ L0/�L0 so that

Li = OK li + �iL0

similarly

Li+1 = OK li+1 + �i+1L0
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Because Li+1 ⊊ Li we must have

li+1 = alimod�iL0

with a ∈ OK because li, li+1 ∈ L0 ∖ �L0, so we may a choose a coherent sequence li

converging to l, which is non zero and l ∈ �Li and this intersection is one dimensional.

The kernel of l is a point of ℙ1 denoted by N(e).

Lemma 3.9. The map from End(X) −→ ℙ1, e 7−→ N(e), is a bijection.

Proof. Let L0 = e0OK + e1OK . Given [x : y] in ℙ1 written with unimodular coordi-

nates. Let l = −ye0 + xe1 ∈ L0 the end〈
L0, l + �L0, l + �2L0, . . .

〉
7−→ [x : y].

Conversely we showed above that if l is a generator for the intersection of the sequence

of lattices Li representing and end

⟨[L0], [L1], [L2], . . .⟩

then we must have Li = OK l + �iL0 and so the map is bijective.

3.4 The redution map

Given x ∈ X (ℂp) represented by homogeneous coordinates [a, b] we obtain a norm x

on V ∗ (de�ned up equivalence) by setting

x(l) = !(l(a, b))

for a linear form in V ∗. The map  : X −→ X, x 7−→ [x] is called the reduction

map.

Lemma 3.10. The reduction map is G−equivariant, so g(x)(l) = X gx(l).

Let L0 = ⟨e0, e1⟩, L1 = ⟨e0, �e1⟩ then

−1([L0]) = {[x, 1] s.t. x ∈ ℂp and !(x− t) = 0 ∀t ∈ OK}

and if e is the open edge determined by [L0] and [L1] is the admissible annulus

−1(e) = {[x, 1] s.t. x ∈ ℂℙ and 1 > !(x) > 0}
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