Geometry of the p-adic upper half plane

Yamidt Bermúdez

1 Basic notations

We use the following notation

- K denote a finite extension of the p-adic numbers \mathbf{Q}_{p}.
- G be the group $G L_{2}(K)$.
- \mathcal{O}_{K} denotes the ring of integers in K.
- π is an uniformizing parameter for \mathcal{O}_{K}.
- $|\cdot|$ is the normalized p-adic absolute value on K extending the p-adic absolute value on \mathbf{Q}_{p}.
- $\omega: K \rightarrow \mathbb{Z} \cup\{\infty\}$ is the additive valuation normalized so that $\omega(\pi)=1$.

Let V be a fixed two dimensional vector space over K, viewed as a space of row vectors, on which G acts on the left by the formula

$$
g([x, y])=[x, y]\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}
$$

\mathbb{P}^{1} will be $\mathbb{P}(V)$ with its G-action. Let V^{*} be the dual of V, consider e_{0} and e_{1} elements in V^{*} respect to the standard basis vectors $[1,0]$ and $[0,1]$ in V; they are homogeneous coordinates on \mathbb{P}^{1}. A linear form in e_{0} and e_{1} is called unimodular if at least one of its two coefficients is a unit in \mathcal{O}_{K}.

The coordinate function

$$
z=\frac{e_{0}}{e_{1}}
$$

is acted on by a matrix $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G$ through the formula

$$
\begin{aligned}
g_{*}(z)([x, y]) & =z\left(g^{-1}([x, y])\right) \\
& =z([x, y] g) \\
& =z([a x+c y, b x+d y]) \\
& =\frac{a z+c}{b z+d}
\end{aligned}
$$

2 The p-adic upper half plane

We want to study here the p-adic upper half plane \mathcal{X}, an space whose L points are given by the rule

$$
\mathcal{X}(L)=\mathbb{P}^{1}(L) \backslash \mathbb{P}^{1}(K)
$$

for complete extensions fields L of K.
Definition 2.1. A connected affinoid subset of \mathbb{P}^{1} is the complement of any nonempty finite union of open disks. An affinoid subset of \mathbb{P}^{1} is a finite union of connected affinoid subsets.

Definition 2.2. Given $x \in \mathbb{P}^{1}\left(\mathbb{C}_{p}\right)$ we may choose homogeneous coordinates $\left[x_{0}, x_{1}\right]$ for x that are unimodular meaning that both coordinates are integral, but at least one is not divisible by π. For a real number $r>0$, let

$$
B^{-}(x, r)=\left\{y \in \mathbb{P}^{1}\left(\mathbb{C}_{p}\right): \omega\left(y_{0} x_{1}-y_{1} x_{0}\right)>r\right\}
$$

where we always take a unimodular representative $\left[y_{0}, y_{1}\right]$ of y.
Definition 2.3. For each integer $n>0$, let \mathcal{P}_{n} be a set of representatives for the points of $\mathbb{P}^{1}(K)$ modulo π^{n}. Let \mathcal{X}_{n}^{-}be the set

$$
\mathcal{X}_{n}^{-}:=\mathbb{P}^{1}\left(C_{p}\right) \backslash \bigcup_{x \in \mathbb{P}_{n}} B^{-}(x, n-1)
$$

Figure 1: Example

Essencially \mathcal{X}_{n}^{-}is constructed by deleting from \mathbb{P}^{1} smaller and smaller balls around the rationals points.

Definition 2.4. $\Omega \subseteq \mathbb{P}^{1}$ is an admissible subset if only if there exists an affinoid covering $\left\{U_{i}\right\}_{i \in I}$ such that, for all affinoid $U \subset \Omega$ there exists $I_{n} \subset I$ finite such that $U \subseteq \bigcup_{i \in I_{n}} U_{i}$. Such affinoid covering is called an admissible covering.

Proposition 2.5. $\mathcal{X}=\bigcup_{n} \mathcal{X}_{n}^{-}$is an admissible open subdomain of \mathbb{P}^{1} and the coverings by the familie $\left\{\mathcal{X}_{n}^{-}\right\}_{n=1}^{\infty}$ are admissible coverings.

2.1 The ring $\mathcal{O}_{\mathcal{X}}$ of entire functions on \mathcal{X}

Consider the set
$\mathcal{O}_{\mathcal{X}_{n}^{-}}=\left\{f: \mathcal{X}_{n}^{-} \rightarrow \mathbb{C}_{p}:\right.$ such that $\exists f_{m} \rightarrow f, f_{m}$ is rational with poles outside of $\left.\mathcal{X}_{n}^{-}\right\}$

$$
\mathcal{O}_{\mathcal{X}}=\left\{f: \mathcal{X} \rightarrow \mathbb{C}_{p}: \text { such that } f / \mathcal{X}_{n}^{-} \in \mathcal{O}_{\mathcal{X}_{n}^{-}} \text {for all } n\right\}
$$

Remark 2.6. Here the norm for the convergence is the norm of the suprem.
Proposition 2.7. $\mathcal{O}_{\mathcal{X}}$ is a Fréchet space with this norm.

3 The Reduction Map

3.1 The Bruhat-Tits Tree

Now consider the fixed two dimensional vector V^{*} over K.
Definition 3.1. A lattice L in V^{*} is a free rank two \mathcal{O}_{k} module in V^{*}. We define the following equivalence relation on the set of lattices in $V^{*}, L_{1} \sim L_{2}$ if there is an scalar $a \in K$ such as $L_{1}=a L_{2}$.

Definition 3.2. Let X be the graph whose vertices are equivalence classes [L] of lattices $L \subset V^{*}$, where two vertices x and y are joined by an edge if $x=\left[L_{1}\right]$ and $y=\left[L_{2}\right]$ with

$$
\pi L_{1} \subsetneq L_{2} \subsetneq L_{1} .
$$

Figure 2: Example

Proposition 3.3. The graph X is a homogeneous tree of degree $q+1$.
Remark 3.4. The degree $q+1$ means that in every vertice there are exactly $q+1$ edges leaving and for a tree we means that the graph is connected and have no loops.

Proof. Degree $q+1$: Let $\left[L_{1}\right]$ a class of equivalence of $\left[L_{2}\right]$ is another vertex leaving [L_{1}] then

$$
\pi L_{1} \subsetneq L_{2} \subsetneq L_{1} \text { so }\{0\} \subsetneq L_{2} / \pi L_{1} \subsetneq L_{1} / \pi L_{1} \approx\left(\mathbb{F}_{q}\right)^{2}
$$

since $\operatorname{dim}\left(L_{2} / \pi L_{1}\right)=1$ it correspond to the one-dimensional subspaces in \mathbb{F}_{q}^{2} and there are exactly $q+1$, so the degree of X is $q+1$.
Connected: Let $[L]$ and $\left[L^{\prime}\right]$ two vertices suppose that $L^{\prime} \subsetneq L$ then a Jordan-Hölder sequences for L / L^{\prime} gives a sequence of lattices

$$
L^{\prime}=L_{n} \subsetneq L_{n-1} \subsetneq \ldots \subsetneq L_{0}=L
$$

such that $l\left(L_{i-1} / L_{i}\right)=1$ for $1 \leq i \leq n$ and the classes $\left[L_{0}\right],\left[L_{1}\right], \ldots,\left[L_{n}\right]$ define a path between $[L]$ and $\left[L^{\prime}\right]$.
X have no loops: Now suppose that X is not a tree, then a cycle in X should be represented by a chain of lattices

$$
L_{d+1}=L^{\prime} \subsetneq L_{d} \subsetneq L_{d-1} \subsetneq \ldots \subsetneq L_{1} \subsetneq L_{0}=L
$$

minimal with no equivalent lattices, where $L^{\prime}=\pi^{r} L$.
Considering the exact sequences

$$
0 \rightarrow L_{i} / L_{i+1} \rightarrow L / L_{i+1} \rightarrow L / L_{i} \rightarrow 0
$$

if and fact that L / L^{\prime} is not a cyclic $\mathcal{O}_{k}-$ module we can prove that there is i_{0} such that

$$
i_{0}=\min \left\{i: L / L_{i} \text { is cyclic but } L / L_{i+1} \text { is not }\right\}
$$

so $L_{i_{0}-1} / L_{i_{0}+1}$ is a non cyclic length two $-\mathcal{O}_{k}$ module and finally $L_{i_{0}+1}=\pi L_{i_{0}-1}$, which is a contradiction.

In this way we have constructed a combinational object X. For a point $x \in X$ on the vertex determined by $[L]$ and $\left[L^{\prime}\right]$ we can write $x=(1-t)[L]+t\left[L^{\prime}\right]$; to indicate that the point is at distance t from $[L]$ in direction $\left[L^{\prime}\right]$. In this way we can see each edge of X as a copy of $[0,1]$ and we obtain a topological space called the realization of \mathbf{X}.

3.2 Norms

Definition 3.5. A norm on V^{*} is a function $\gamma: V^{*} \rightarrow \mathbb{R} \cup\{\infty\}$ such that

- $\gamma(x)=\infty$ if and only if $x=0$
- $\gamma(a x)=\omega(a)+\gamma(x)$ for all $a \in K$
- $\gamma(x+y) \geq \inf \{\gamma(x), \gamma(y)\}$

We say that $\gamma_{1} \sim \gamma_{2}$ if and only if $\gamma_{1}-\gamma_{2}=c$ for some $c \in \mathbb{R}$.
Now to a point $x \in X$ we associate an equivalence class of norms of V^{*}. Here we consider two cases:
Case $1 x$ is a vertex, in this case choose a lattice $L=\left\langle l_{0}, l_{1}\right\rangle$ and let

$$
\gamma\left(a l_{0}+b l_{1}\right)=\inf \{\omega(a), \omega(b)\}
$$

or alternatively

$$
\gamma(w)=-\inf \left\{n \in \mathbb{Z}: \pi^{n} w \in L\right\}
$$

Case $2 x$ lies on a edge, then $x=(1-t)[L]+t\left[L^{\prime}\right]$ in this case choose $L=\left\langle l_{0}, l_{1}\right\rangle$ and by the Theorem of the principal divisors we can choose $L^{\prime}=\left\langle l_{0}, \pi l_{1}\right\rangle$ and define

$$
\gamma\left(a l_{0}+b l_{1}\right)=\inf \{\omega(a), \omega(b)-t\}
$$

Proposition 3.6. This construction establishes a bijection between the set of equivalence classes of norms on V^{*} and the points of the space X.

Proof. We will construct the inverse map of the construction given.
Let γ be any norm on V^{*}, suppose that $\exists x \in V^{*}$ such that $\gamma(x)=0$ (we can scale γ by translating it in its equivalence class). Choose a (finite) set of representatives R in L for the projective space $P\left(L^{\prime} / \pi L^{\prime}\right)$. The norm is determined by its values on elements of R, all of which lie in $[0,1)$.
Let $w \in V^{*}$ such that $w=u \pi^{m} r+\pi^{m+1} w^{\prime}$ with $u \in \mathcal{O}_{K}^{*}$ and $w^{\prime} \in L^{\prime}$. Then $\gamma(w)=m+\gamma(r)$, if $\gamma(r)=0$ for all $r \in R$ then this norm comes from the case 1 .
We can check also that norms equivalent to γ have unit balls equivalent to L^{\prime}, if $\gamma(r)>0$ the $\gamma(r)$ is unique because if $\exists r^{\prime} \in R$ such that $\gamma\left(r^{\prime}\right)>0$ then $L^{\prime}=\left\langle r, r^{\prime}\right\rangle$ and $\gamma(x)>0$ for all $x \in L^{\prime}$, which is a contradiction. Then set $L=L^{\prime}+r / \pi$ the norm comes from the case 2 and $t=1-\gamma(r)$; for equivalent norms the unit ball is equivalent to L or L^{\prime}.

3.3 Ends

Definition 3.7. Let $\left(\left[L_{0}\right],\left[L_{1}\right], \ldots\right)$ be a infinite non-Backtracking sequence of adjacent vertices in which two sequences are equivalent if they differ by finite initial sequence of vertices.

An equivalence class of such sequences is called an end of the tree. The set of ends is denoted $\operatorname{Ends}(X)$ an represent the set of points at infinity for the tree.
Given an end $e=\left\langle\left[L_{0}\right],\left[L_{1}\right], \ldots\right\rangle$ we can construct a representing sequence of lattices for the path

$$
L_{0} \supsetneq L_{1} \supseteq L_{2} \supseteq \ldots
$$

with the property that $L_{i} / L_{i+1} \cong \mathcal{O}_{K} / \pi \mathcal{O}_{K}$
Lemma 3.8. The intersection of the lattices is a one dimensional subspace of V^{*} spanned by a linear form l.

Proof. Since the sequence has no backtracking using the same argument that we use in the proof of the proposition that X is a tree we can prove that L_{0} / L_{i} is a cyclic \mathcal{O}_{K}-module of lenght $i \forall i \geq 1$ and the same is true for $L_{i} / \pi^{i} L_{0}$ so we may choose $l_{i} \in L_{0} / \pi L_{0}$ so that

$$
L_{i}=\mathcal{O}_{K} l_{i}+\pi^{i} L_{0}
$$

similarly

$$
L_{i+1}=\mathcal{O}_{K} l_{i+1}+\pi^{i+1} L_{0}
$$

Because $L_{i+1} \subsetneq L_{i}$ we must have

$$
l_{i+1}=a l_{i} \bmod \pi^{i} L_{0}
$$

with $a \in \mathcal{O}_{K}$ because $l_{i}, l_{i+1} \in L_{0} \backslash \pi L_{0}$, so we may a choose a coherent sequence l_{i} converging to l, which is non zero and $l \in \pi L_{i}$ and this intersection is one dimensional. The kernel of l is a point of \mathbb{P}^{1} denoted by $N(e)$.

Lemma 3.9. The map from $\operatorname{End}(X) \longrightarrow \mathbb{P}^{1}, e \longmapsto N(e)$, is a bijection.
Proof. Let $L_{0}=e_{0} \mathcal{O}_{K}+e_{1} \mathcal{O}_{K}$. Given $[x: y]$ in \mathbb{P}^{1} written with unimodular coordinates. Let $l=-y e_{0}+x e_{1} \in L_{0}$ the end

$$
\left\langle L_{0}, l+\pi L_{0}, l+\pi^{2} L_{0}, \ldots\right\rangle \longmapsto[x: y] .
$$

Conversely we showed above that if l is a generator for the intersection of the sequence of lattices L_{i} representing and end

$$
\left\langle\left[L_{0}\right],\left[L_{1}\right],\left[L_{2}\right], \ldots\right\rangle
$$

then we must have $L_{i}=\mathcal{O}_{K} l+\pi^{i} L_{0}$ and so the map is bijective.

3.4 The redution map

Given $x \in \mathcal{X}\left(\mathbb{C}_{p}\right)$ represented by homogeneous coordinates $[a, b]$ we obtain a norm γ_{x} on V^{*} (defined up equivalence) by setting

$$
\gamma_{x}(l)=\omega(l(a, b))
$$

for a linear form in V^{*}. The map $\gamma: \mathcal{X} \longrightarrow X, x \longmapsto\left[\gamma_{x}\right]$ is called the reduction map.

Lemma 3.10. The reduction map is G-equivariant, so $g\left(\gamma_{x}\right)(l)=\mathcal{X} g_{x}(l)$.
Let $L_{0}=\left\langle e_{0}, e_{1}\right\rangle, L_{1}=\left\langle e_{0}, \pi e_{1}\right\rangle$ then

$$
\gamma^{-1}\left(\left[L_{0}\right]\right)=\left\{[x, 1] \text { s.t. } x \in \mathbb{C}_{p} \text { and } \omega(x-t)=0 \forall t \in \mathcal{O}_{K}\right\}
$$

and if e is the open edge determined by $\left[L_{0}\right]$ and $\left[L_{1}\right]$ is the admissible annulus

$$
\gamma^{-1}(e)=\left\{[x, 1] \text { s.t. } x \in \mathbb{C}_{\mathbb{P}} \text { and } 1>\omega(x)>0\right\}
$$

References

[1] Dasgupta, S. and Teitelbaum J. The p-adic upper half plane. Lectures Arizona Winter school (2007).
[2] Fresnel, J. and Van der Put, M. (2003)Rigid Analytic Geometry and Its Applications 218.

