Geometry of the p-adic upper half plane

Yamidt Bermúdez

1 Basic notations

We use the following notation

- K denote a finite extension of the p-adic numbers \mathbf{Q}_p .
- G be the group $GL_2(K)$.
- \mathcal{O}_K denotes the ring of integers in K.
- π is an uniformizing parameter for \mathcal{O}_K .
- $|\cdot|$ is the normalized *p*-adic absolute value on *K* extending the *p*-adic absolute value on \mathbf{Q}_p .
- $\omega: K \to \mathbb{Z} \cup \{\infty\}$ is the additive valuation normalized so that $\omega(\pi) = 1$.

Let V be a fixed two dimensional vector space over K, viewed as a space of row vectors, on which G acts on the left by the formula

$$g([x,y]) = [x,y] \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1}$$

 \mathbb{P}^1 will be $\mathbb{P}(V)$ with its G-action. Let V^* be the dual of V, consider e_0 and e_1 elements in V^* respect to the standard basis vectors [1,0] and [0,1] in V; they are homogeneous coordinates on \mathbb{P}^1 . A linear form in e_0 and e_1 is called unimodular if at least one of its two coefficients is a unit in \mathcal{O}_K .

The coordinate function

 $z = \frac{e_0}{e_1}$ is acted on by a matrix $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$ through the formula $g_*(z)([x, y]) = z(g^{-1}([x, y]))$ = z([x, y]g)

$$= z([ax + cy, bx + dy])$$
$$= \frac{az + c}{bz + d}$$

2 The p-adic upper half plane

We want to study here the p-adic upper half plane \mathcal{X} , an space whose L points are given by the rule

$$\mathcal{X}(L) = \mathbb{P}^1(L) \setminus \mathbb{P}^1(K)$$

for complete extensions fields L of K.

Definition 2.1. A connected affinoid subset of \mathbb{P}^1 is the complement of any nonempty finite union of open disks. An affinoid subset of \mathbb{P}^1 is a finite union of connected affinoid subsets.

Definition 2.2. Given $x \in \mathbb{P}^1(\mathbb{C}_p)$ we may choose homogeneous coordinates $[x_0, x_1]$ for x that are unimodular meaning that both coordinates are integral, but at least one is not divisible by π . For a real number r > 0, let

$$B^{-}(x,r) = \{ y \in \mathbb{P}^{1}(\mathbb{C}_{p}) : \omega(y_{0}x_{1} - y_{1}x_{0}) > r \}$$

where we always take a unimodular representative $[y_0, y_1]$ of y.

Definition 2.3. For each integer n > 0, let \mathcal{P}_n be a set of representatives for the points of $\mathbb{P}^1(K)$ modulo π^n . Let \mathcal{X}_n^- be the set

$$\mathcal{X}_n^- := \mathbb{P}^1(C_p) \setminus \bigcup_{x \in \mathbb{P}_n} B^-(x, n-1)$$

Figure 1: Example

Essencially \mathcal{X}_n^- is constructed by deleting from \mathbb{P}^1 smaller and smaller balls around the rationals points.

Definition 2.4. $\Omega \subseteq \mathbb{P}^1$ is an admissible subset if only if there exists an affinoid covering $\{U_i\}_{i\in I}$ such that, for all affinoid $U \subset \Omega$ there exists $I_n \subset I$ finite such that $U \subseteq \bigcup_{i\in I_n} U_i$. Such affinoid covering is called an admissible covering.

Proposition 2.5. $\mathcal{X} = \bigcup_n \mathcal{X}_n^-$ is an admissible open subdomain of \mathbb{P}^1 and the coverings by the familie $\{\mathcal{X}_n^-\}_{n=1}^\infty$ are admissible coverings.

2.1 The ring $\mathcal{O}_{\mathcal{X}}$ of entire functions on \mathcal{X}

Consider the set

 $\mathcal{O}_{\mathcal{X}_n^-} = \left\{ f: \mathcal{X}_n^- \to \ \mathbb{C}_p: \text{such that } \exists f_m \to f, f_m \text{ is rational with poles outside of } \mathcal{X}_n^- \right\}$

 $\mathcal{O}_{\mathcal{X}} = \left\{ f : \mathcal{X} \to \mathbb{C}_p : \text{such that } f / \mathcal{X}_n^- \in \mathcal{O}_{\mathcal{X}_n^-} \text{ for all } n \right\}$

Remark 2.6. Here the norm for the convergence is the norm of the suprem.

Proposition 2.7. $\mathcal{O}_{\mathcal{X}}$ is a Fréchet space with this norm.

3 The Reduction Map

3.1 The Bruhat-Tits Tree

Now consider the fixed two dimensional vector V^* over K.

Definition 3.1. A lattice L in V^* is a free rank two \mathcal{O}_k module in V^* . We define the following equivalence relation on the set of lattices in V^* , $L_1 \sim L_2$ if there is an scalar $a \in K$ such as $L_1 = aL_2$.

Definition 3.2. Let X be the graph whose vertices are equivalence classes [L] of lattices $L \subset V^*$, where two vertices x and y are joined by an edge if $x = [L_1]$ and $y = [L_2]$ with

$$\pi L_1 \subsetneq L_2 \subsetneq L_1.$$

Figure 2: Example

Proposition 3.3. The graph X is a homogeneous tree of degree q + 1.

Remark 3.4. The degree q + 1 means that in every vertice there are exactly q + 1 edges leaving and for a tree we means that the graph is connected and have no loops.

Proof. Degree q + 1: Let $[L_1]$ a class of equivalence of $[L_2]$ is another vertex leaving $[L_1]$ then

$$\pi L_1 \subsetneq L_2 \subsetneq L_1$$
 so $\{0\} \subsetneq L_2/\pi L_1 \subsetneq L_1/\pi L_1 \approx (\mathbb{F}_q)^2$

since $\dim (L_2/\pi L_1) = 1$ it correspond to the one-dimensional subspaces in \mathbb{F}_q^2 and there are exactly q + 1, so the degree of X is q + 1.

Connected: Let [L] and [L'] two vertices suppose that $L' \subsetneq L$ then a Jordan-Hölder sequences for L/L' gives a sequence of lattices

$$L' = L_n \subsetneq L_{n-1} \subsetneq \ldots \subsetneq L_0 = L$$

such that $l(L_{i-1}/L_i) = 1$ for $1 \leq i \leq n$ and the classes $[L_0], [L_1], \ldots, [L_n]$ define a path between [L] and [L'].

X have no loops: Now suppose that X is not a tree, then a cycle in X should be represented by a chain of lattices

$$L_{d+1} = L' \subsetneq L_d \subsetneq L_{d-1} \subsetneq \ldots \subsetneq L_1 \subsetneq L_0 = L$$

minimal with no equivalent lattices, where $L' = \pi^r L$. Considering the exact sequences

$$0 \to L_i/L_{i+1} \to L/L_{i+1} \to L/L_i \to 0$$

if and fact that L/L' is not a cyclic \mathcal{O}_k – module we can prove that there is i_0 such that

$$i_0 = \min\{i : L/L_i \text{ is cyclic but } L/L_{i+1} \text{ is not}\}$$

so L_{i_0-1}/L_{i_0+1} is a non cyclic length $two - \mathcal{O}_k$ module and finally $L_{i_0+1} = \pi L_{i_0-1}$, which is a contradiction.

In this way we have constructed a combinational object X. For a point $x \in X$ on the vertex determined by [L] and [L'] we can write x = (1-t)[L] + t[L']; to indicate that the point is at distance t from [L] in direction [L']. In this way we can see each edge of X as a copy of [0, 1] and we obtain a topological space called **the realization** of X.

3.2 Norms

Definition 3.5. A norm on V^* is a function $\gamma: V^* \to \mathbb{R} \cup \{\infty\}$ such that

- $\gamma(x) = \infty$ if and only if x = 0
- $\gamma(ax) = \omega(a) + \gamma(x)$ for all $a \in K$
- $\gamma(x+y) \ge \inf\{\gamma(x), \gamma(y)\}$

We say that $\gamma_1 \sim \gamma_2$ if and only if $\gamma_1 - \gamma_2 = c$ for some $c \in \mathbb{R}$.

Now to a point $x \in X$ we associate an equivalence class of norms of V^* . Here we consider two cases:

Case 1 x is a vertex, in this case choose a lattice $L = \langle l_0, l_1 \rangle$ and let

$$\gamma(al_0 + bl_1) = \inf\{\omega(a), \omega(b)\}\$$

or alternatively

$$\gamma(w) = -\inf\{n \in \mathbb{Z} : \pi^n w \in L\}$$

Case 2 x lies on a edge, then x = (1 - t)[L] + t[L'] in this case choose $L = \langle l_0, l_1 \rangle$ and by the Theorem of the principal divisors we can choose $L' = \langle l_0, \pi l_1 \rangle$ and define

$$\gamma(al_0 + bl_1) = \inf\{\omega(a), \omega(b) - t\}$$

Proposition 3.6. This construction establishes a bijection between the set of equivalence classes of norms on V^* and the points of the space X.

Proof. We will construct the inverse map of the construction given.

Let γ be any norm on V^* , suppose that $\exists x \in V^*$ such that $\gamma(x) = 0$ (we can scale γ by translating it in its equivalence class). Choose a (finite) set of representatives R in L for the projective space $P(L'/\pi L')$. The norm is determined by its values on elements of R, all of which lie in [0, 1).

Let $w \in V^*$ such that $w = u\pi^m r + \pi^{m+1}w'$ with $u \in \mathcal{O}_K^*$ and $w' \in L'$. Then $\gamma(w) = m + \gamma(r)$, if $\gamma(r) = 0$ for all $r \in R$ then this norm comes from the case 1. We can check also that norms equivalent to γ have unit balls equivalent to L', if $\gamma(r) > 0$ the $\gamma(r)$ is unique because if $\exists r' \in R$ such that $\gamma(r') > 0$ then $L' = \langle r, r' \rangle$ and $\gamma(x) > 0$ for all $x \in L'$, which is a contradiction. Then set $L = L' + r/\pi$ the norm comes from the case 2 and $t = 1 - \gamma(r)$; for equivalent norms the unit ball is equivalent to L or L'.

3.3 Ends

Definition 3.7. Let $([L_0], [L_1], ...)$ be a infinite non-Backtracking sequence of adjacent vertices in which two sequences are equivalent if they differ by finite initial sequence of vertices.

An equivalence class of such sequences is called an **end** of the tree. The set of ends is denoted Ends(X) an represent the set of points at infinity for the tree. Given an end $e = \langle [L_0], [L_1], \ldots \rangle$ we can construct a representing sequence of lattices for the path

$$L_0 \supseteq L_1 \supseteq L_2 \supseteq \ldots$$

with the property that $L_i/L_{i+1} \cong \mathcal{O}_K/\pi \mathcal{O}_K$

Lemma 3.8. The intersection of the lattices is a one dimensional subspace of V^* spanned by a linear form l.

Proof. Since the sequence has no backtracking using the same argument that we use in the proof of the proposition that X is a tree we can prove that L_0/L_i is a cyclic \mathcal{O}_K -module of lenght $i \forall i \geq 1$ and the same is true for $L_i/\pi^i L_0$ so we may choose $l_i \in L_0/\pi L_0$ so that

$$L_i = \mathcal{O}_K l_i + \pi^i L_0$$

similarly

$$L_{i+1} = \mathcal{O}_K l_{i+1} + \pi^{i+1} L_0$$

Because $L_{i+1} \subsetneq L_i$ we must have

$$l_{i+1} = al_i \mod \pi^i L_0$$

with $a \in \mathcal{O}_K$ because $l_i, l_{i+1} \in L_0 \setminus \pi L_0$, so we may a choose a coherent sequence l_i converging to l, which is non zero and $l \in \pi L_i$ and this intersection is one dimensional. The kernel of l is a point of \mathbb{P}^1 denoted by N(e).

Lemma 3.9. The map from $End(X) \longrightarrow \mathbb{P}^1$, $e \longmapsto N(e)$, is a bijection.

Proof. Let $L_0 = e_0 \mathcal{O}_K + e_1 \mathcal{O}_K$. Given [x : y] in \mathbb{P}^1 written with unimodular coordinates. Let $l = -ye_0 + xe_1 \in L_0$ the end

$$\langle L_0, l + \pi L_0, l + \pi^2 L_0, \ldots \rangle \longmapsto [x:y].$$

Conversely we showed above that if l is a generator for the intersection of the sequence of lattices L_i representing and end

$$\langle [L_0], [L_1], [L_2], \ldots \rangle$$

then we must have $L_i = \mathcal{O}_K l + \pi^i L_0$ and so the map is bijective.

3.4 The redution map

Given $x \in \mathcal{X}(\mathbb{C}_p)$ represented by homogeneous coordinates [a, b] we obtain a norm γ_x on V^* (defined up equivalence) by setting

$$\gamma_x(l) = \omega(l(a, b))$$

for a linear form in V^* . The map $\gamma : \mathcal{X} \longrightarrow X, x \longmapsto [\gamma_x]$ is called **the reduction** map.

Lemma 3.10. The reduction map is G-equivariant, so $g(\gamma_x)(l) = \mathcal{X}g_x(l)$. Let $L_0 = \langle e_0, e_1 \rangle$, $L_1 = \langle e_0, \pi e_1 \rangle$ then

$$\gamma^{-1}([L_0]) = \{ [x, 1] \text{ s.t. } x \in \mathbb{C}_p \text{ and } \omega(x - t) = 0 \ \forall t \in \mathcal{O}_K \}$$

and if e is the open edge determined by $[L_0]$ and $[L_1]$ is the admissible annulus

$$\gamma^{-1}(e) = \{ [x, 1] \ s.t. \ x \in \mathbb{C}_{\mathbb{P}} \ and \ 1 > \omega(x) > 0 \}$$

References

- [1] Dasgupta, S. and Teitelbaum J. The p-adic upper half plane. Lectures Arizona Winter school (2007).
- [2] Fresnel, J. and Van der Put, M. (2003) Rigid Analytic Geometry and Its Applications 218.