
The p-adic zeta function of Kubota-Leopoldt and more func-
tions

In these notes we are going to extend the Riemann ζ function ζ(s) =∑+∞
n=1

1
ns to p-adic numbers using a tecnique of p-adic interpolation.

Then we will describe some Banach spaces of function over Zp that
correspond to the usual ”real” Banach spaces Ck(R)

1 First naive tentatives

The first naive tentative to define a p-adic Riemann function would
be to take, for all positive n, the function f(s) = ns and extend
it to p-adic integers and then take the sum of the inverses of these
functions. Anyway this approach does not work. Infact we have

Lemma: Let {si} be a strictly increasing sequence of positive in-
tegers converging to s ∈ Zp. Then the sequence psi converges to 0
with respect to the p-adic norm.

Therefore we should take ps = 0 ∀s ∈ Zp, s 6∈ Zp, that is clearly
absurd. Therefore the function ns cannot be p-adically interpolated
if p|n. Anyway it is easy to show that ns extends to a continous
function over Zp if p does not divide n.

We can try to separate the multiple-to-p terms from the other ones
in the sum, obtaining

ζ(s) =
∑
n6∈pZ

1

ns
+

+∞∑
m=1

1

pms
=

∑
n6∈pZ

1

ns
+

1

ps
ζ(s), (1)

and therefore having

ζ(s) =
1

1− p−s
∑
n6∈pZ

1

ns
, (2)

that is, we have taken out the p-Euler factor in the definition of ζ.
Anyway it can be shown that the sum in (2) diverges in Zp, so even
this definition does not work.
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We can try another approach: we know that ζ(−n) = (−1)nBn+1

n+1
∈

Q for all positive integers n. So we can try to interpolate the right
hand side of this formula and then use the density of N in Zp to obtain
a continuous function. (This is the approach used in Koblitz’s book).
Anyway this approach requires the theory of p-adic distributions, so
we are not going to use it. But we will use a similar idea, that
is, express the quantities ζ(−n) as a formula that we can easily
interpolate to a continous p-adic function.

2 The Amice transform

In this section we use the Amice transform µ→
∫

Zp
(1 + T )xµ(x) to

build up a measure on p-adic integers.

Lemma: ∀a ∈ Z∗p there exists a measure λa ∈ D0(Zp,Qp) such that

Aλa = 1
T
− a

(1+T )a−1
.

Proof: Denote as F (T ) the function on the right. Since the Amice
transform is an isometry between the set of measures on Zp and the
set of power series with bounded coefficients in Qp, it is sufficient to
show that F (T ) ∈ Zp[[T ]]. We have that

F (T ) =
1

T
− a∑+∞

n=1

(
a
n

)
T n

=
1

T
− 1

T
∑+∞
n=1 a

−1
(
a
n

)
T n−1

=

∑+∞
n=2 a

−1
(
a
n

)
T n−2∑+∞

n=1 a
−1

(
a
n

)
T n−1

.

(3)
This series belongs to Zp[[T ]] because the denominator has constant
term equal to 1 and therefore lies in Zp[[T ]]∗. So the measure λa
exists. Moreover, using again the fact that the Amice transform is
an isometry, we have that vD0(λa) = 0.

Proposition: ∀a ∈ Z∗p, n ∈ N we have∫
Zp

xnλa = (−1)n(1− a1+n)ζ(−n). (4)

Proof: Let a ∈ R+. We define the auxiliary real function fa(t) =
Aλa(e

t − 1) = 1
et−1

− a
eat−1

. Then tnfa(t) → 0 for every positive n.
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It follows that the analytic complex L-function

L(fa, s) =
1

Γ(s)

∫ +∞

0
fa(t)t

sdt

t
= (1− a1−s)ζ(s) (5)

satisfies

f (n)
a (0) = (−1)nL(fa,−n) = (−1)n(1− a1+n)ζ(−n). (6)

The last expression is an algebraic identity, so it holds even when
we take a ∈ Z∗p. Therefore finally we have

f (n)
a (0) =

d

dt

(n)

Aλa(e
t−1)|t=0 =

d

dt

(n)

(
∫

Zp

etxλa)|t=0 =
∫

Zp

xnλa. (7)

The last equality proves the proposition.

As a corollary of this result we can prove the famous Kummer con-
gruences.

Corollary(Kummer congruences): ∀a ∈ Z∗p, k ≥ 1 (or k ≥ 2 if p =

2), let n1, n2 ≥ k such that n1 ≡ n2 (mod pk−1(p− 1)). Then

vp((1 + a1+n1)ζ(−n1)− (1− a1+n2)ζ(−n2)) ≥ k. (8)

Proof: Apply the proposition to express the left hand side of
the formula in the integral form. Take the p-adic valuation and
note that n1 and n2 must have the same parity, therefore the terms
(−1)ni have the same sign and disappear when taking the valuation.
Then the formula becomes

vp(
∫

Zp

(xn1−xn2)λa) ≥ vD0(λa) + vC0(xn1 − xn2) = inf
x∈Zp

vp(x
n1−xn2)

(9)
therefore we only need to show that the last infimum is ≥ k. We
distinguish two cases:

1) If x ∈ pZp then pk divides both xn1 and xn2 and we have the
inequality.

2) If x ∈ Z∗p then xp
k−1(p−1) ≡ 1 (mod pk) and therefore we have

that vp(x
n1 − xn2) = vp(1− xn2−n1) ≥ k and we are done.
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3 Operations on measures

We will know list some fundamental operations on the set of mea-
sures, that we are going to apply to λa. In this section we always
take µ ∈ D0(Zp,Qp)

• Restriction: Let X ∈ Zp be a compact open set. The restric-
tion of µ to X is defined as the composite of µ with multiplica-
tion by the characteristic function of the set X. In particular,
if X = i+ pnZp for 0 ≤ i ≤ pn − 1, then

1i+pnZp(x) =
1

pn
∑
zpn=1

zx−i (10)

and therfore computing the Amice transform, we have

AResi+pnZp (µ)(T ) =
1

pn
∑
zpn=1

1

zi
Aµ((1 + T )z − 1). (11)

• The φ-action: Let φ : C0(Zp,Qp) → C0(Zp,Qp) defined as
φ(F )(T ) = F ((1 + T )p − 1). We define the action of φ on
µ by ∫

Zp

f(x)φµ(x) =
∫

Zp

f(px)µ(x) (12)

for all f ∈ C0(Zp,Qp). It follows that

Aφµ(T ) = Aµ((1 + T )p − 1) = φ(Aµ(T )). (13)

• The ψ-action: Let ψ : C0(Zp,Qp) → C0(Zp,Qp) defined as

ψ(F )((1 + T )p − 1) =
1

p

∑
zp=1

F ((1 + T )z − 1). (14)

We define the action of ψ on µ by∫
Zp

f(x)ψµ(x) =
∫

Zp

f(
x

p
)µ(x) (15)

for all f ∈ C0(Zp,Qp). It follows that Aψµ(T ) = ψ(Aµ(T ).
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• The γ-action: Let Γ = Gal(Qp(µ
∞
p )/Qp) and let χ : Γ → Z∗p be

the cyclotomic character. ∀γ ∈ Γ we define the action of γ on
µ by ∫

Zp

f(x)γµ(x) =
∫

Zp

f(χ(γ)x)µ(x). (16)

and we have that

Aγµ(T ) = Aµ((1 + T )χ(γ) − 1) = γ(Aµ(T )). (17)

Properties:

1. ψφµ = µ that is ψ ◦ φ = Id.

2. φψµ = µ−ResZ∗p(µ).

3. ∀γ ∈ Γ φγµ = γφµ and ψγµ = γψµ.

4 The measure λa

We are now going to apply the operations defined in the previous
section on the measure λa and see how it modifies.

Proposition: ∀a ∈ Z∗p λa is a fixed point for the ψ-action, that is
ψλa = λa.

Proof: It suffices to show the same result for the Amice transform
Aλa . Let γa ∈ Γ such that χ(γa) = a. We have that

ψ(Aλa(T )) = ψ(
1

T
)− ψ(

a

(1 + T )a − 1
) = ψ(

1

T
)− aψγa(

1

T
) (18)

so, by property 3 of the ψ-action, we only need to show that ψ( 1
T
) =

1
T
. Let F (T ) = ψ( 1

T
). We have

F ((1 + T )p − 1) =
1

p

∑
zp=1

1

(1 + T )z − 1
=
−1

p

∑
zp=1

+∞∑
n=0

((1 + T )z)n.

(19)
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Now we use the absolute convergence argument to exchange the two
summands and observe that the sum of a fixed power of p-th roots
of unity is null if the exponent is prime to p and equals p if p divides
the exponent and we have

−1

p

+∞∑
n=0

(1 + T )n(
∑
zp=1

zn) = −
+∞∑
n=0

(1 + T )pn =
1

(1 + T )p − 1
(20)

and we are done.

Corollary:

1. ResZ∗p(λa) = (1− φψ)λa = (1− φ)λa.

2.
∫

Z∗p
xnλa =

∫
Zp
xn(1− φ)λa = (−1)n(1− a1+n)(1− pn)ζ(−n).

Proof: 1) follows immediatly from the proposition and the prop-
erties of the action of φ and ψ. 2) follows from 1) and the theorem
of section 1.

The factor (1−pn) is no other than the p-Euler factor of the classical
Riemann zeta function. Therefore, to avoid the lack of p-adic con-
tinuity of the exponential function in the integrand, we can simply
reduce to Z∗p taking out this factor.

We can now state the main result.

Main Theorem: ∀i ∈ Z/(p− 1)Z, i ∈ Z/2Z if p = 2, there exists a
unique function ζp,i : Zp → Qp such that:

1. ζp,i is continous if i 6= 1;

2. ζp,1 is continous up to a single pole in s = 1;

3. ζp,i(−n) = (1− pn)ζ(−n) if n ≡ −i (mod (p− 1)).

5 The Leopoldt’s Γ-transform

The purpose of this section is to prove the main theorem we have
just stated. The idea is to extend to Zp the function described in
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the previous corollary, but we need an argument to prove that the
extension can be realized in a continuous way.

We start with a lemma that enables us to split up to exponential
function into two different pieces

Lemma: Every x ∈ Z∗p can be written uniquely in the form ω(x)η(x),
with ω(x) ∈ µ(Qp), η(x) ∈ 1 + qZp, where

• µ(Qp) = ±1 and q = 4 if p = 2;

• µ(Qp) = µp−1 and q = p if p 6= 2.

Proof: If p = 2 the lemma is obvious, otherwise take ω(x) =
limn→+∞ xp

n
and η(x) = ω(x)−1x.

ω(x) is called the Teichmueller lift, while η(x) = exp(log(x)). There-
fore we can write xn = ω(x)nη(x)n; note that η(x)n can be extended
to a continous p-adic function η(x)s with respect to s, but ω(x)n

can not be extended in p-adically continous way.

Theorem: Let i be defined as in Main Theorem , u = 1 + q and

λ ∈ D0(Z∗p,Q
∗
p). Then there exists a measure Γ

(i)
λ ∈ D0(Zp,Qp),

called the i-th Leopoldt’s Γ-transform of λ, such that∫
Z∗p
ω(x)iη(x)sλ(x) =

∫
Zp

usyΓ
(i)
λ (y) = A

Γ
(i)
λ

(us − 1). (21)

Proof: Write Z∗p =
⋃
ε∈µ(Qp) ε+ qZp. Using the additivity of inte-

grals and the γ-action we have∫
Z∗p
ω(x)iη(x)sλ(x) =

∑
ε∈µ(Qp)

ω(ε)i
∫
ε+qZp

η(x)sλ(x) =
∑

ε∈µ(Qp)

ω(ε)i
∫
1+qZp

η(εx)sγε−1λ(x).

(22)
Observe now that there is an isomorphism α : 1 + qZp → Zp de-

fined by α(x) = y = log(x)
log(u)

and that η(x)s = exp(s log(x)) =

exp(sy log(u)) = usy = usα(x). Therefore we can define a new mea-
sure α∗(γε−1λ)(y) = γε−1λ(α−1(y)) and our expression becomes∑
ε∈µ(Qp)

ω(ε)i
∫
1+qZp

η(εx)sγε−1λ(x) =
∑

ε∈µ(Qp)

ω(ε)i
∫

Zp

usyα∗(γε−1λ)(y).

(23)
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therefore we set Γ
(i)
λ =

∑
ε∈µ(Qp) ω(ε)iα∗(γε−1λ) and we are done.

Note that the integral in the left hand side of formula (21), which
was a priori non continuous, is now known to be continuous because
the right hand side is. Thanks to this result we can know prove the
main theorem.

Proof of the Main Theorem: Note firstly that, if the function ζp,i
exists, then it must be unique, because it is defined as a continuous
function on the set c+ (p− 1)N, which is dense in Zp. We define

ζp,i(s) =
1

1− ω(a)1−iη(a)1−s

∫
Z∗p
ω(x)−iη(x)−sλa(x). (24)

If n ≡ −i (mod (p − 1)) then we have, by the corollary in the
previous section

ζp,i(−n) =
1

1− ω(a)1+nη(a)1+n

∫
Z∗p
ω(x)nη(x)nλa(x) = (−1)n(1−pn)ζ(−n).

(25)
Moreover note that ζ(−n) = 0 if n is odd, so we can remove the
factor (−1)n from the formula without changing the result. This
gives property 3). The integral in (24) is continuous because of
the previous theorem, so ζp,i is continuous unless the denominator
vanishes. This happens for i = 1, s = 1 and in that case we have a
simple pole. Therefore the theorem is proved.

8



6 Ck functions

The purpose of this chapter is to define further p-adic Banach spaces
of function on Zp extending the concepts of derivatives to p-adic
numbers. We recall that, for f ∈ C0(Zp,Qp), we can write f(x) =∑+∞
n=0 an(f)

(
x
n

)
, where an(f) =

∑n
i=0(−1)i

(
n
i

)
f(n− 1).

We define f (k) the k-th derivative of f by induction as:

• f (0)(x) = f(x),

• f (k)(x, h1, ..., hk) = 1
hk

(f (k−1)(x+hk, h1, ..., hk−1)−f (k−1)(x, h1, ..., hk−1)) =
1

h1h2...hk
(
∑
J⊆{1,...,k}(−1)|J |−1f(x+

∑
j∈J hj)).

We say that f ∈ Ck(Zp,Qp) if f (i) can be extended to a continous
function on Zi+1

p for every i ≤ k. Observe that, for valuations, one
has the inductive formula

vp(f
(k)(x, h1, ..., hn)) ≥ vC0(f)−

k∑
j=1

vp(hk). (26)

This notion of derivative is quite different from the usual one. For
example, writing an element x ∈ Zp as

∑+∞
n=0 an(x)p

n, consider the
function f(x) =

∑+∞
n=0 an(x)p

2n. Then vp(f(x) − f(y)) = 2vp(x −
y) and therefore f is C∞ in the usual sense. But f 6∈ C2(Zp,Qp)
according to our definition. In fact take xn = (0, pn, pn) and yn =
(pn(p−1), pn, pn); then f (2)(xn) = 0, f (2)(yn) = p(1−p) and vp(xn−
yn) → +∞, but vp(f

(2)(xn) − f (2)(yn)) → 1 6= +∞ = vp(f
(2)(0)).

Therefore f (2) is not p-adically continuous.

We can define a valuation on Ck(Zp,Qp) by

vCk(f) = min
i≤k

inf
(x,h1,...,hi)∈Zi+1

p

vp(f
(i)(x, h1, ..., hi)) (27)

and define the numbers

L(n, k) = max{
i∑

j=1

vp(nj), i ≤ k, nj ∈ N+,
i∑

j=1

nj = n} (28)
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Theorem(Barski): Ck(Zp,Qp) is a Banach space with the valua-

tion vCk and a Banach basis is given by the functions pL(n,k)
(
x
n

)
Corollary: Let f =

∑+∞
n=0 an(f)

(
x
n

)
∈ C0(Zp,Qp), then the follwing

are equivalent:

1. f ∈ Ck(Zp,Qp);

2. limn→+∞ vp(an(f))− k log(1+n)
log(p)

= +∞;

3. limn→+∞ nk|an(f)|p = 0.

Proof(sketch): 2 ⇐⇒ 3 is obvious beacuse they are the same
proposition written in term of p-adic valuation and p-adic norm
respectively. To show that 1 ⇐⇒ 2 simply note that L(n, k) is

asymptotically equivalent to k log(1+n)
log(p)

.

This corollary enables us to extend the definition of p-adic deriva-

tives even when k is not an integer. Let f =
∑+∞
n=0 an(f)

(
x
n

)
∈

C0(Zp,Qp) and r ∈ R+. We say that f ∈ Cr(Zp,Qp) if

lim
n→+∞

nr|an(f)|p = 0 (29)

Using the corollary again, we can define a valuation over Cr(Zp,Qp)
by

vCr(f) = inf{vp(an(f))− r
log(1 + n)

log(p)
}. (30)

Theorem: Cr(Zp,Qp) is a Banach space with respect to the valua-
tion vCr .

We have a natural containment C0(Zp,Qp) ⊇ Ck(Zp,Qp) ⊇ Cr(Zp,Qp).
if k ≤ r.
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7 Locally analytic functions

The purpose of this section is to extend the theory of Taylor power
series to the p-adic complex number field Cp. We start with a tech-
nical lemma.

Lemma: Let (an)n∈N be a sequence in Cp such that vp(an) → +∞
and let f(T ) =

∑+∞
n=0 anT

n. Then the following are true:

1. If x0 ∈ OCp then f (k)(x0) converges for all k and

lim
k→+∞

vp(
f (k)(x0)

k!
) = +∞; (31)

2. if x, x0 ∈ Cp then

f(x) =
+∞∑
n=0

f (n)(x0)

n!
(x− x0)

n (32)

and

inf vp(
f (n)(x0)

n!
) = inf vp(an). (33)

3. inf vp(an) = infx∈OCp
vp(f(x)) and vp(f(x)) = inf vp(an) for all

but finitely many cosets x ∈ OCp/mOCp
.

Proof:

1. taking the derivatives of f we have that f (k)(x0)
k!

=
∑+∞
n=0 an+k

(
n+k
k

)
xn0 .

Passing to the p-adic valuations we have that vp(x
n
0 ) ≥ 0, vp(

(
n+k
k

)
) ≥

0 and therefore we have that vp(
f (k)(x0)

k!
) → +∞ and that

inf vp(
f (n)(x0)

n!
) ≥ inf vp(an)

2. f(x) =
∑+∞
n=0 anx

n =
∑+∞
n=0 an(x−x0+x0)

n; now we apply New-
ton’s binomial formula and use the absolute convergence to ex-

change the summands yielding
∑+∞
n=0 an

∑+∞
k=0

(
n
k

)
(x−x0)

kxn−k0 =∑+∞
k=0(x− x0)

k ∑+∞
n=0 an

(
n
k

)
xn−k0 =

∑+∞
k=0

f (k)(x0)
k!

(x− x0)
k. More-

over, taking derivatives by this formula and taking p-adic valu-

ations, we have that inf vp(an) ≥ inf vp(
f (n)(x0)

n!
) and using part

1) we have the equality.
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3. Clearly inf vp(an) ≤ infx∈OCp
vp(f(x)). Since vp(an) → +∞

the infimum must be effectively reached at some integer n0.
We may suppose that vp(an0) = 0. Let f̄(T ) be the reduction
of f modulo the maximal ideal mOCp

, then by our hypothesis

f̄ must be a polynomial with coefficients in Fp and therefore it
has a finite number of roots in OCp/mOCp

. Then, if we take x to
be an element of OCp which does not reduce modulo mOCp

to a

root of f̄ , it follows that vp(f(x)) = 0 and the claim is proved.

We can now define analytic functions over Cp. If x0 ∈ Cp, r ∈ R+,
we can define the disc of center x0 and radius r as the set

D(x0, r) = {x ∈ Cp | vp(x− x0) ≥ r}. (34)

Then a function f : D(x0, r) → Cp is said to be analytic if

lim
n→+∞

vp(
f (n)(x0)

n!
) + nr = +∞ (35)

and consequently define a valuation over the set of analytic functions
given by

vrx0
(f) = inf (vp(

f (n)(x0)

n!
) + nr). (36)

Proposition: Let f : D(x0, r) → Cp be an analytic function. Then:

1. ∀k ∈ N, f (k) is analytic and vrx0
(f (k)) ≥ vrx0

(f) and goes to +∞
when k → +∞;

2. f can be written as a Taylor power series at every x ∈ D(x0, r);

3. vrx0
(f) = infx∈D(x0,r)vp(f(x)).

Proof:(Sketch)

1. Simply compute the derivatives of f (k) from f -th ones and use
the definition of analytic.

2. If r ∈ Q, then choose α ∈ Cp with vp(α) = r. Define the
auxiliary function F (x) = f(x0+αx) and apply to this function
the previous lemma to get the result. If r 6∈ Q choose a sequence
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(rn) ∈ Q which converges to r decreasingly. Using the fact that
D(x0, r) = ∪D(x0, rn) we turn back to the rational case and
we are done.

3. Use the same technique as 2).
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