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Abstract

These are notes from my talk in the Forschungsseminar onp-adic Galois representations,

which mainly follows the Fontaine-Ouyang book project. Mistakes are likely, so, please beware.

1 Notation

We fix the following data througout the talk:

• p a prime.

• Qunr
p the maximal unramified extension ofQp (inside some fixed algebraic closureQp).

• K/Qp a finite extension, a “p-adic field” (insideQp).

• K0 = Qnr
p ∩ K = the maximal absolutely unramified extension ofQp contained inK.

• k the residue field ofK0 andK.

• σ : Gal(Qunr
p /Qp) → Gal(Qunr

p /Qp) the absolute arithmetic Frobenius, coming fromx 7→ xp

onGal(Fp/Fp).

• GK = Gal(K/K) the absolute Galois group.

2 Filtered vector spaces - Hodge numbers and polygons

Let V be aK-vector space together with a filtrationFil• V which is decreasing, separated and ex-

haustive. This means that for everyi ∈ Z the sub-K-vector spacesFili V of V satisfy

• Fili V ⊇ Fili+1 V for all i ∈ Z (decreasing),

•
⋂

i∈Z Fili V = (0) (separated) and

•
⋃

i∈Z Fili V = DK (exhaustive).
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A homomorphism of filtered vector spacesϕ : V → W is aK-linear map compatible with the

filtration, i.e.ϕ(Fili V ) ⊆ Fili W . In particular, the filtration on sub-K-vector spacesV ′ ≤ V is such

thatFili V ′ ≤ Fili V .

We define thei-th graded pieceas

gri V := Fili V/ Fili+1 V.

We say thatj is a jump if grj V 6= 0.

Let V1, V2, . . . , Vr be filteredK-vector spaces. Thetensor productV1 ⊗K V2 ⊗K · · · ⊗K Vr is

equipped with the filtration

Fili V :=
∑

i1+i2+···+ir=i

Fili1 V1 ⊗ Fili2 V2 ⊗ · · · ⊗ Filir Vr.

As this definition is symmetric in theVi, it descends to a filtration onSymr V and
∧r V .

We first define the Hodge number abstractly.

Definition 2.1 (i) Let V be1-dimensional with only jump in the filtration atj. TheHodge number

is defined as

tH(V ) := tH(V, Fil) := j.

(ii) If dimK V = h > 1, theHodge numberis defined as

tH(V ) := tH(
h
∧

V )

with the induced filtration on the right.

More concretely, we have:

Proposition 2.2 We havetH(V ) =
∑

i∈Z i · dimK gri V .

Proof. Let j1 < · · · < js be the jumps of the filtration ofV . We know that there is only a single

jump in the filtration of theh-th exterior product, as it is of dimension1. Hence, we are looking for

the biggest possible choice ofi1 ≤ i2 ≤ · · · ≤ ih such that

Fili1 V ⊗ Fili2 V ⊗ · · · ⊗ Filih V 6= (0).

• Choosejs as often as possible so that there is

0 6= v1,s ∧ v2,s ∧ · · · ∧ vhs,s ∈ grjs V = Filjs V.

Necessarily,hs equals the dimension ofgrjs V .
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• Choosejs−1 as often as possible, so that there is

0 6= v̄1,s−1 ∧ v̄2,s−1 ∧ · · · ∧ v̄hs−1,s−1 ∈ grjs V.

Necessarily,hs−1 equals the dimension ofgrjs−1 V . Note that by taking representatives, we so

far have

0 6= v1,s−1 ∧ v2,s−1 ∧ · · · ∧ vhs−1,s−1 ∧ v1,s ∧ v2,s ∧ · · · ∧ vhs,s ∈ Filjs−1 V.

• Continue like this down toj1.

From
∑

i∈Z

i · dimK gri V =
s

∑

k=1

jk · dimK grjk V

we obtain the claimed formula. 2

Proposition 2.3 (a) If 0 → V ′ → V → V ′′ → 0 is a short exact sequence of filteredK-vector

spaces (the maps must be compatible with the filtration, all filtrations are separated, exhaustive

and desending), then we have

tH(V ) = tH(V ′) + tH(V ′′).

(b) LetV1 andV2 be two filteredK-vector spaces. Then we have

tH(V1 ⊗K V2) = tH(V1) dimK(V2) + tH(V2) dimK(V1).

We now associate theHodge polygonto a filteredK-vector space with jumpsj1 < · · · < js and

hi = dimK grji V . It is the polygon with vertices

(0, 0), (h1, j1h1), (h1 + h2, j1h1 + j2h2), . . . , (h,
s

∑

i=1

jihi = tH(V )).

The slope of ther-th line segment is the position of ther-th jump, i.e. equal tojr, since the slope is
∑r

i=1 jihi −
∑r−1

i=1 jihi
∑r

i=1 hi −
∑r−1

i=1 hi

=
jrhr

hr
= jr.

h1+h2h1 h
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3 Semi-linear algebra - Newton numbers and polygons

The beginning of this section is very basic. However, in the end we need to quote a theorem of

Dieudonné’s (or Manin’s). Thanks to Kay and Andre for telling me aboutit! I had - in vain - tried to

prove it over the week-end. It would still be interesting to find an elementaryproof.

The integral theory of what we treat here is that of isocrystals (see, for instance, Katz: Slope

filtration of F-crystals). We will, however, not go into this theory and use anad-hoc approach, just

as in the book (the book hides important concepts in Remark 6.47 without giving any citation or any

appreciation of the depth of the statements).

Definition 3.1 LetD be aK0-vector space. A mapϕ : D → D is calledsemi-linearif it is Qp-linear

and satisfiesϕ(ad) = σ(a)ϕ(d) for all a ∈ K0 and alld ∈ D.

Conceptually speaking, this is a very bad definition because the composition oftwo semi-linear

maps is not semi-linear any more! One would have to weaken the concept to theexistence ofi such

that ϕ(ad) = σi(a)ϕ(d). Or, more generally, one could allow anyσ ∈ Gal(K0/Qp), even if the

Galois group is non-cyclic (and even non-abelian).

The ad-hoc approach is to still use matrices overK0 for describing semi-linear maps. Let us fix

a basis{e1, . . . , er} of D asK0-vector space and say thatϕ is represented by the matrixA = (ai,j)

with respect to the chosen basis, i.e.ϕ(ei) =
∑n

j=1 aj,iej . Let {e′1, . . . , e
′

r} be another basis. Write

e′k =
n

∑

i=1

ci,kei andej =
n

∑

ℓ=1

dℓ,je
′

ℓ

such thatDC = I = CD with C = (ci,j) andD = (di,j).

We compute:

ϕ(e′k) = ϕ(

n
∑

i=1

ci,kei) =

n
∑

i=1

σ(cik)ϕ(ei) =

n
∑

i=1

n
∑

j=1

σ(ci,k)aj,iej

=

n
∑

i=1

n
∑

j=1

n
∑

ℓ=1

σ(ci,k)aj,idℓ,je
′

ℓ =

n
∑

ℓ=1

(

DAσ(C)
)

ℓ,k
e′ℓ.

Hence, the matrix representingϕ with respect to the basis{e′1, . . . , e
′

r} is C−1Aσ(C). For some

reason, this formula differs from the one in the book (maybe: column vectors vs. row vectors?).

Corollary 3.2 Let ϕ : D → D be a semi-linear map on the finite dimensionalK0-vector spaceD.

LetA be the matrix ofϕ with respect to some basis. Then theNewton number

tN (D) := tN (D, ϕ) := vp(det(A))

is well-defined, i.e. does not depend on the choice of basis.

4



Proof. We havedet(C−1Aσ(C)) = σ(det(C))
det(C) det(A) and σ(s)

s
is a unit inOK0

for all s 6= 0.

2

The semi-linear mapϕ : D → D gives a semi-linear map on tensor powers, symmetric powers

and on
∧h D. If h is the dimension ofD, let (a) the1 × 1-matrix representingϕ on

∧h D. We have

the equality:

tN (D) = tN (

r
∧

D) = vp(a).

This is due to the definition of the determinant.

Proposition 3.3 (a) If 0 → D′ → D → D′′ → 0 is a short exact sequence of finite-dimensional

K0-vector spaces compatible with semi-linear mapsϕ′, ϕ, ϕ′′, then we have

tN (D) = tN (D′) + tN (D′′).

(b) LetD1 andD2 be two finite dimensionalK0-vector spaces with semi-linearϕi. Then we have

tN (D1 ⊗ D2) = tN (D1) dimK0
(D2) + tN (D2) dimK0

(D1)

for ϕ(d1 ⊗ d2) = ϕ(d1) ⊗ ϕ(d2).

We are now going to introduce theNewton polygon. The caseK0 = Qp is elementary and

we start by it. In this case, we define the Newton polygon ofD as the usual Newton polygon for

the characteristic polynomialf of ϕ. The slopes of the Newton polygon are the valuations of the

eigenvalues ofϕ: We factorf into irreducibles:f =
∏r

i=1 fi. The valuations of the zeros of an

irreducible polynomial are equal: we call that valuation theslopeof the irreducible polynomial or of

its roots. More precisely, possibly after base change, for every occuring slopeα there isd ∈ D andλ

such thatϕ(d) = λd andvp(λ) = α ∈ Q. We order the slopes in size:α1 < α2 < · · · < αs (we may

haves < r, since slopes can appear more than once). We can decomposeD as

D =

s
⊕

i=1

Dαi

(generalised Jordan normal form). Now the Newton polygon is the polygonwith vertices

(0, 0), (h1, α1h1), (h1 + h2, α1h1 + α2h2), . . . , (h,

s
∑

i=1

αihi = tN (D))

with hi = dimK0
Dαi

. The slope of thek-th line segment isαk.

We now go back to generalK0 ⊂ Qunr
p . The miracle is that in the semi-linear world something

even stronger holds, which one could calldiagonalisability of every semi-linear map. We first have to

introduce base change for semi-linear maps to the maximal unramified extension. GivenD andϕ, we

define

ϕ : Qunr
p ⊗K0

D → Qunr
p ⊗K0

D, x ⊗ d 7→ σ(x) ⊗ ϕ(d).
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Note that this is a well-defined semi-linear map onQunr
p ⊗K0

D.

The following short calculation illustrates (part of) the difficulty of handlingsemi-linear maps

(compare with part (b) below). Letd ∈ Qunr
p ⊗K0

D andλ ∈ Qp such thatϕ(d) = λd and letx ∈ K0.

Then

ϕ(xd) = σ(x)ϕ(d) =
σ(x)

x
xd.

The eigenvalue changed, but its valuation did not, asσ(x)
x

has valuation0.

Theorem 3.4 (Dieudonné, Manin)LetD andϕ as above.

(a) There exist rational numbersα1 < α2 < · · · < αs, called theslopesof ϕ, andϕ-stable sub-K0-

vector spacesDαj
for j = 1, . . . , s of D such that

D =
s

⊕

i=1

Dαi

and eachQunr
p ⊗K0

Dαj
has a basis{e1, . . . , em} such that for alli = 1, . . . , m there isλi ∈ Qp

with vp(λi) = α andϕ(ei) = λiei.

(b) If there isd ∈ Qunr
p ⊗K0

Dα andλ ∈ Qp such thatϕ(d) = λd, thenvp(λ) = α.

(c)
∑s

j=1 αj dimK0
Dαj

= tN (D).

(d) αj dimK0
Dαj

∈ Z for all j = 1, . . . , s.

In the general case, we define the Newton polygon as before, i.e. as thepolygon with vertices

(0, 0), (h1, α1h1), (h1 + h2, α1h1 + α2h2), . . . , (h,
s

∑

i=1

αihi = tN (D))

with hi = dimK0
Dαi

. The slope of thek-th line segment isαk.

4 Semi-stablep-adic Galois representations

In this section, we will define semi-stable and crystalline representations by using the ringsBst and

Bcris in the way that we are meanwhile used to (e.g. Christian Liedtke’s talk).

In the previous talk, Stefan Kukulies introduced the ringsBst andBcris.

Proposition 4.1 The ringsBst andBcris are (Qp, GK)-regular.

The proof of this proposition is similar to the proof that we saw in Coung’s talk for the case of

BHT. Let

ρ : GK → AutQp
(V )

be ap-adic Galois representation. We let
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• Dst(V ) := (Bst ⊗Qp
V )GK and

• Dcris(V ) := (Bcris ⊗Qp
V )GK .

Purely formally, as proved in Ralf’s talk, the regularity yields the following corollary.

Corollary 4.2 Let• stand forst or cris.

(a) There is an injectiveB•[GK ]-linear homomorphism

α•(V ) : B• ⊗K0
D•(V ) → B• ⊗Qp

V, λ ⊗ x 7→ λx

for the action ofGK on B• ⊗K0
D•(V ) on the first component and the diagonalGK-action on

B• ⊗Qp
V .

(b) dimK0
D•(V ) ≤ dimQp

V .

(c) dimK0
D•(V ) = dimQp

V ⇔ α•(V ) is an isomorphism⇔ V is B•-adimissible.

(d) The functorsD•(V ) are compatible with
⊕

,
⊗

and duals onB•-admissibleV .

Now we make the expected definition.

Definition 4.3 • Ap-adic Galois representationV ofGK is calledsemi-stableif it is Bst-admissible.

• A p-adic Galois representationV of GK is calledcrystallineif it is Bcris-admissible.

As Bcris is contained inBst, we have thatBcris ⊗Qp
V ≤ Bst ⊗Qp

V (asK0[GK ]-modules). As

further takingGK-invariants is left exact, we have(Bcris ⊗Qp
V )GK ≤ (Bst ⊗Qp

V )GK asK0-vector

spaces. From Corollary 4.2 we further obtain the inequality:

dimK0
Dcris(V ) ≤ dimK0

Dst(V ) ≤ dimQp
V.

This together with Corollary 4.2 immediately gives the following corollary.

Corollary 4.4 Any crystalline representation is semi-stable.

We also have:

Proposition 4.5 (a) For anyp-adic Galois representation we haveK ⊗K0
Dst(V ) ≤ DdR(V ) as

K-vector spaces.

(b) If V is semi-stable, thenK ⊗K0
Dst(V ) = DdR(V ) asK-vector spaces.

(c) Any semi-stable representation is de Rham.
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Proof. The basic (and only) ingredient is the following injection (from Stefan’s talk):

K ⊗K0
Bst →֒ BdR.

As above, we tensor withV and takeGK-invariants and obtain the injection ofK-vector spaces

(

(K ⊗K0
Bst) ⊗Qp

V
)GK →֒

(

BdR ⊗Qp
V

)GK = DdR(V ).

Noticing the trivial equalityK ⊗K0
Dst(V ) = K ⊗K0

(

Bst ⊗Qp
V

)GK =
(

(K ⊗K0
Bst)⊗Qp

V
)GK

leads us to concludeK ⊗K0
Dst(V ) ≤ DdR(V ) asK-vector spaces, i.e. (a). Using the(Qp, GK)-

regularity ofBdR, we obtain the inequality

dimK0
Dst(V ) ≤ dimK DdR(V ) ≤ dimQp

V,

from which the other parts of the proposition follow. 2

5 Towards filtered (ϕ, N)-modules

In this part we will approach the definition of(ϕ, N)-modules via its main example:Dst(V ).

Let us recall from Stefan’s talk:

• The “Frobenius”ϕ uniquely extends toBst by requiringϕ(log[̟]) = p log[̟].

• OnBst there is the “monodromy operator”N : Bst → Bst, which is defined by

N
(

∑

n∈N

bn(log[̟])n
)

=
∑

n∈N

nbn(log[̟])n−1.

• gϕ = ϕg andgN = Ng for everyg ∈ GK0
, i.e.ϕ andN commute with the Galois action.

• Nϕ = pϕN .

• The sequence

0 → Bcris → Bst
N
−→ Bst → 0

is exact.

This implies the following for ap-adic Galois representationρ : GK → AutQp
(V ):

• On Dst(V ) =
(

Bst ⊗Qp
V

)GK we define the “Frobenius” byϕ : Dst(V ) → Dst(V ) by

ϕ(b ⊗ v) = ϕ(b) ⊗ v.

• OnDst(V ) =
(

Bst ⊗Qp
V

)GK we define the “monodromy operator”N : Dst(V ) → Dst(V )

by N(b ⊗ v) = N(b) ⊗ v.

• OnDst(V ) we still have the formulaegϕ = ϕg andgN = Ng for everyg ∈ GK0
, i.e.ϕ andN

commute with the Galois action. This is clear, since the action is only on the first component.
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• We also haveNϕ = pϕN onDst(V ) for the same reason.

• Because ofdimK0
Dst(V ) ≤ dimQp

V , this dimension is finite.

• The Frobeniusϕ is an isomorphism onDst(V ), since it is injective onBst (and, consequently,

also onBst ⊗Qp
V , and thus on

(

Bst ⊗Qp
V

)GK ).

• The sequence

0 → Dcris(V ) → Dst(V )
N
−→ Dst(V )

is exact, as· ⊗Qp
V is exact and(·)GK is left exact.

Let V be semi-stable. Then we have

V crystalline ⇔ dimK0
Dcris(V ) = dimK0

Dst(V ) = dimQp
V ⇔ N = 0.

Further, we recall from Christian’s talk that there is a descending filtrationof K-vector spaces on

DdR(V ):

· · · ⊇ Fili−1
DdR(V ) ⊇ Fili DdR(V ) ⊇ Fili+1

DdR(V ) ⊇ . . . .

We use it for defining a descending filtration ofK-vector spaces onDK := K ⊗K0
Dst(V ) ≤

DdR(V ) (see Proposition 4.5) by putting

Fili DK := DK ∩ Fili DdR(V ).

This will makeDst(V ) into a filtered(ϕ, N)-module overK of finite dimension with bijectiveϕ.

The filtration is separated and exhaustive.

6 Filtered (ϕ, N)-modules - definitions and simple properties

We now use as definition the properties that we just saw forDst(V ).

Definition 6.1 A (ϕ, N)-moduleoverK0 (or k) is aK0-vector spaceD together with two maps

ϕ : D → D “Frobenius” and N : D → D “monodromy”

such that

(1) ϕ is semi-linear,

(2) N is K0-linear and

(3) Nϕ = pϕN .

Definition 6.2 Let D1 and D2 be two (ϕ, N)-modules with operatorsϕi and Ni (i = 1, 2). A

morphismη : D1 → D2 of (ϕ, N)-modules is aK0-linear map such thatϕ2 ◦ η = η ◦ ϕ1 and

N2 ◦ η = η ◦ N1.
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Definition 6.3 Let D1 and D2 be two(ϕ, N)-modules with operatorsϕi and Ni (i = 1, 2). The

tensor productD1 ⊗ D2 is defined as theK0-vector spaceD1 ⊗ D2 := D1 ⊗K0
D2 equipped with

Frobenius

ϕ(d1 ⊗ d2) := ϕ(d1) ⊗ ϕ2(d2)

and the monodromy

N(d1 ⊗ d2) := N1(d1) ⊗ d2 + d1 ⊗ N2(d2).

Here we note (the book does not do this) that the definition is symmetric inD1 andD2. Hence, we

obtain(ϕ, N)-modulesSymr D (r-fold symmetric product) as well
∧r D (r-fold exterior product).

(The book mentions at one point that one can see the exterior product asa sub-object of the tensor-

product. This is correct, but only because we are over a field of characteristic zero. Otherwise, the

correct way is to see the symmetric product as a quotient of the tensor product and the exterior product

as a sub-object of the symmetric product.)

Definition 6.4 LetD be a(ϕ, N)-module such thatD0 is finite dimensional asK0-vector space and

such thatϕ is bijective. ThedualD∗ of D is defined as theK0-vector spaceHomK0−linear(D, K0)

equipped with the Frobenius

ϕ∗(α) :=
(

D
ϕ−1

−−→ D
α
−→ K0

σ
−→ K0

)

and monodromy

N∗(α) := −α ◦ N.

There is a “category-way” of seeing(ϕ, N)-modules. Namely, they are modules over the non-

commutative ring generated byK0, N andϕ subject to the relationsϕa = σ(a)ϕ, Na = aN for all

a ∈ K0 and the relationNϕ = pϕN .

Proposition 6.5 LetD be a finite dimensional(ϕ, N)-module overK0 with bijectiveϕ.

(a) N decreases slopes by1, i.e.N(Dα) ⊆ Dα−1.

(b) N is nilpotent.

Proof. (a) We may test this after base change toQunr
p . Let d ∈ Qunr

p ⊗K0
Dα andλ ∈ Qp such

thatvp(λ) = α andϕ(d) = λd. We compute

ϕNd =
1

p
Nϕ(d) =

1

p
Nλd =

λ

p
Nd

and conclude thatNd is an eigenvector forϕ with valuationα − 1, whenceNd ∈ Dα−1.

(b) (First proof.) By (a) and the fact that the decompositionD =
⊕s

j=1 Dαj
is finite,N s = 0.

(Second proof, not using (a).) Let0 6= λ ∈ Qp be an eigenvalue ofN such that the associated

eigenspaceV ⊆ D ⊗ Qp is non-trivial. Letv ∈ V . Because ofNϕv = pϕNv = pϕλv = pλϕv,

it follows thatN acts onϕ(V ) by multiplication withpλ, whenceϕ(V ) ∩ V = (0). It follows that
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λ = 0, as iterating the application ofϕ would imply thatV is infinite-dimensional. Hence,N has

only 0 as eigenvalue and is hence nilpotent. 2

Now we introduce another important structure on(ϕ, N)-modules, namely the filtration. In the

exampleDst(V ) we have a filtration onK ⊗K0
Dst(V ): the de Rham-filtration.

Definition 6.6 A filtered(ϕ, N)-module overK is a(ϕ, N)-moduleD overK0 together with a filtra-

tion Fil• DK on theK-vector spaceDK := K⊗K0
D which is decreasing, separated and exhaustive.

The category of filtered(ϕ, N)-modules overK is denoted byMFK(ϕ, N).

Definition 6.7 A morphism of filtered(ϕ, N)-modules overK is a morphismη : D1 → D2 of

(ϕ, N)-modules overK0 such that the induced mapηK : D1,K → D2,K is a homomorphism of

filteredK-vector spaces as defined earlier in this talk.

Definition 6.8 LetD1, D2, . . . , Dr be filtered(ϕ, N)-modules overK. Thetensor productD1⊗D2⊗

· · · ⊗ Dr in the category of filtered(ϕ, N)-modules overK is the tensor productD := D1 ⊗ D2 ⊗

· · · ⊗ Dr in the category of(ϕ, N)-modules overK0 equipped with the filtration onDK as defined

earlier in this talk. As this definition is symmetric in theDi the filtration descends to give rise toSymr

and
∧r in the category of filtered(ϕ, N)-modules overK.

Definition 6.9 Let D be a filtered(ϕ, N)-module overK such thatD is a finite-dimensionalK0-

vector space and such thatϕ is bijective. Thedual filtered(ϕ, N)-moduleD∗ overK of D is the dual

D∗ in the category of(ϕ, N)-modules overK0 equipped with the filtration

Fili(D∗)K := (Fil−i+1 DK)∗.

For a filtered(ϕ, N)-moduleD overK, we define theHodge numberof D as

tH(D) := tH(DK)

and theNewton numbertN (D) as before. We have the following properties from earlier on.

Proposition 6.10 (a) If 0 → D′ → D → D′′ → 0 is a short exact sequence of filtered(ϕ, N)-

modules overK, then we have

tN (D) = tN (D′) + dN (D′′) andtH(D) = tH(D′) + dH(D′′).

(b) LetD1 andD2 be two filtered(ϕ, N)-modules overK. Then we have

tN (D1 ⊗ D2) = tN (D1) dimK0
(D2) + tN (D2) dimK0

(D1)

and

tH(D1 ⊗ D2) = tH(D1) dimK0
(D2) + tH(D2) dimK0

(D1).
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(c) For a finite dimensional(ϕ, N)-moduleD with bijectiveϕ, we havetN (D∗) = −tN (D) and

tH(D∗) = −tH(D).

Definition 6.11 A filtered(ϕ, N)-module overK is calledadmissibleif

(i) dimK0
D < ∞,

(ii) ϕ is bijective onD,

(iii) tH(D) = tN (D) and

(iv) for any subobjectD′ ≤ D in the category of filtered(ϕ, N)-modules overK the inequality

tH(D′) ≤ tN (D′)

holds.

The category of admissible filtered(ϕ, N)-modules overK is denoted byMFad
K (ϕ, N).

Let D be an admissible(ϕ, N)-module overK andD′ be a sub-object. A very useful statement

is that the Hodge polygon ofD′ stays below the Newton polygon ofD′ (we allow that they “touch”,

of course).

The argument is best given in a picture. We sketch it. IfD′ only has a single Newton slopeα,

the statement is clear. Note that all Hodge slopes occuring in the polygon ofD′

α also occur in the

Hodge polygon ofD′, but possibly on longer line segments. Ifα was the smallest Newton slope, then

we conclude that up todim D′

α the Hodge polygon remains below the Newton polygon. (Note that

whereas the Newton polygon can be obtained by concatenating the Newton polygons of allD′

α, this

is not true for Hodge polygons.) If nowD′ = D′

α ⊕ D′

β , we get the statement from our previous

observation and the inequalitytH(D′

α ⊕ D′

β) ≤ tN (D′

α ⊕ D′

β). We repeat the argument from above

that all Hodge slopes here have to occur in the Hodge polygon forD′, but possibly on longer line

segments. This again implies that now up todimD′

α + dimD′

β the Hodge polygon is below the

Newton polygon. Like this we continue.

7 Examples of admissible filtered(ϕ, N)-modules

7.1 Trivial filtration

A filtration on aK-vector spaceV is calledtrivial if

Fil0(V ) = V and Fil1(V ) = (0).

This means that the Hodge polygon is the straight line from(0, 0) to (h, 0) with h = dimK V .

Lemma 7.1 LetD be a filtered(ϕ, N)-module overK with trivial filtration. ThenD is admissible if

and only ifD is of slope0. In that case,N = 0.
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Proof. If D is admissible, then the Newton polygon has to be above the Hodge polygon (i.e.

above0) with endpointtH(D) = tN (D) = 0, so the Newton polygon also has to be the straight line

from (0, 0) to (h, 0) with h = dimK V , whence all the slopes are zero.

Conversely, if the slope is zero, then the Newton polygon is the straight line from (0, 0) to (h, 0).

The same holds for all sub-objects, whenceD is admissible.

If all the slopes are zero, thenD = D0 andND ⊆ D−1 = (0). 2

7.2 Tate twist

Let D be a filtered(ϕ, N)-module overK. For i ∈ Z define thei-th Tate twistD〈i〉 as follows

• D〈i〉 := D asK0-vector space,

• Filr(D〈i〉)K := Filr+i DK for r ∈ Z,

• N onD〈i〉 is the same asN onD,

• ϕ onD〈i〉 is defined asp−iϕ onD.

Lemma 7.2 (a) D〈i〉 is a filtered(ϕ, N)-module overK.

(b) D〈i〉 is admissible if and only ifD is admissible.

(c) Dst(V (i)) ∼= (Dst(V ))〈i〉.

We skip the proof, which is by a computation. As a consequence of the lemma wehave

dimQp
V (i) = dimQp

V ≤ dimK0
Dst(V ) = dimK0

(Dst(V (i))).

We immediately obtain the first of the equivalences:

• V is semi-stable⇔ V (i) is semi-stable,

• V is de Rham⇔ V (i) is de Rham,

• V is crystalline⇔ V (i) is crystalline.

7.3 Dimension1

We now suppose that we are given a1-dimensional(ϕ, N)-moduleD over K. We choose a basis

d ∈ D, so thatϕ(d) = λd for someλ ∈ K0, whencetN (D) = vp(λ). The monodromy operatorN

must be zero, as it is nilpotent. Due to1-dimensionality, the filtration onDK has a single jump, which

by definition occurs attH(D).

Here is the general construction of admissible(ϕ, N)-modules of dimension1 over K. It only

depends onλ ∈ K×

0 . We define an associated(ϕ, N)-moduleDλ as follows.

Dλ = K0, ϕ = λσ, N = 0
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with the filtration

Filr(DK) =







DK for r ≤ vp(λ),

0 for r > vp(λ).

We haveDλ
∼= Dµ as(ϕ, N)-modules if and only if there isu in the unit group of the integers of

K0 such thatµ = λσ(u)
u

. For, if suchu is given, then the isomorphismDλ → Dµ of K0-vector spaces

is given by multiplication byu. Conversely, any isomorphismDλ → Dµ must be multiplication by

someu and an easy calculation gives the relationµ = λσ(u)
u

.

7.4 Dimension2

The aim of this section is to classify all admissible(ϕ, N)-modules overK = Qp of dimension2.

The case of trivial filtration was treated above. By the Tate twist we can andwill from now on

assume that there are two jumps occuring at0 andj. Hence, we have

Filr DK =



















DK if r ≤ 0,

L if 1 ≤ r ≤ j,

(0) if r > j,

with some1-dimensionalQp-vector spaceL.

We now compute and plot the Newton and the Hodge polygon. The Hodge polygon is by definition

the polygon with vertices(0, 0), (1, 0), (2, j).

Let f(X) = X2 + uX + v ∈ Qp[X] be the characteristic polynomial ofϕ. The Newton polygon

of D is just the usual Newton polygon off , i.e. the convex hull of(0, 0), (1, vp(u)), (2, vp(v)). A

different description is as follows. Factorf(X) = (X − λ1)(X − λ2) in Qp[X], where we orderλ1

andλ2 such thata := vp(λ1) ≤ b := vp(λ2): the first line segment has slopea, the second one has

slopeb.

1 2

a

a+b

1 2

j

Newton polygon Hodge polygon
We see that ifD is admissible, then

tN (D) = a + b = j = tH(D) anda ≥ 0.
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The latter condition comes from the fact that the Newton polygon has to be above the Hodge polygon.

7.4.1 The non-crystalline caseN 6= 0

Let v be an eigenvector with eigenvalueλ ∈ Qp (we will shortly see thatλ ∈ Qp). We have

ϕNv =
1

p
Nϕv =

1

p
Nλv =

λ

p
Nv.

Hence,Nv is either0 or an eigenvector ofϕ with eigenvalueλ
p
. Applying this with an eigenvectorv1

with eigenvalueλ1, we findNv1 = 0, as the eigenvalue ofNv1 would have valuation smaller than

vp(λ2) ≥ vp(λ1), which is a contradiction. This also shows thatvp(λ1) 6= vp(λ2) (otherwiseN = 0).

Let v2 an eigenvector with eigenvalueλ2. It follows thatNv2 6= 0, as otherwiseN = 0, sincev1

andv2 form a basis ofD. This givespλ1 = λ2. It follows thatλ1, λ2 ∈ Qp and

j = tH(D) = tN (D) = 1 + 2vp(λ1).

Now choose the basis{e1, e2} of D with e2 := v2 ande1 = Ne2. Then we have

ϕ =
(

λ1 0
0 pλ1

)

andN = ( 0 1
0 0 ) .

We now determineL explicitly. There is a unique1-dimensional subobjectD′ ≤ D because it has

to be fixed byϕ andN , namelyD′ = 〈e1〉. Obviously,tN (D′) = vp(λ1) = a < j = 2a + 1. The

filtration onD′ is the one induced fromD, i.e.

Filr D′ = D′ ∩ Filr D =



















D′ if r ≤ 0,

D′ ∩ L if 1 ≤ r ≤ j,

0 if r > j.

Hence, we have

tH(D′) = 0 if L 6= D′ andtH(D′) = j if L = D′. (7.1)

It follows that

tH(D′) ≤ tN (D′) = a ⇔ D′ 6= L.

The admissibility thus impliesD′ 6= L, whenceL = 〈e2 + αe1〉 for a uniqueα ∈ Qp.

Conversely, choosingα ∈ Qp and0 6= λ ∈ Zp and putting (for the standard basis on the2-

dimensionalQp-vector spaceD)

ϕ =
(

λ 0
0 pλ

)

andN = ( 0 1
0 0 ) ,

as well as

Filr D =



















D if r ≤ 0,

〈( α
1 )〉 if 1 ≤ r ≤ j,

(0) if r > j,

we obtain an admissible(ϕ, N)-module overQp. By Tate twisting we obtain all admissible(ϕ, N)-

modules overQp.
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7.4.2 The crystalline case:N = 0

First case:f(X) = X2 + uX + v is irreducible overQp.

As there is no non-trivial subobject (it would be a line with eigenvalue inQp), admissibility ofD

is equivalent toa + b = tN (D) = tH(D) = j.

Suppose thatD is admissible and pick any vector0 6= e1 ∈ L. Then{e1, e2} with e2 = ϕ(e1)

form a basis ofD. The characteristic polynomial forces the following shape:

ϕ =
(

0 −v
1 −u

)

andN = 0

and

Filr D =



















D if r ≤ 0,

〈( 1
0 )〉 if 1 ≤ r ≤ j,

(0) if r > j.

Conversely, givenu, v ∈ Qp with j = vp(v) > 0 such thatX2 + uX + v is irreducible inQp[X],

by the above formulae we can associate to it an irreducible admissible(ϕ, N)-module overQp. By

Tate twisting we obtain all of this type.

Second case:f(X) = (X − λ1)(X − λ2) with λ1, λ2 ∈ Qp.

We first treat the caseλ := λ1 = λ2 such that (for some basis{e1, e2}) ϕ =
(

λ 1
0 λ

)

. I do not

find this case treated in the text, but it does not seem to be excluded. In this case, there is a unique

subobject, namely,D′ = 〈e1〉. We havetN (D′) = vp(λ) = a < 2a = j. By Equation 7.1,

admissibility hence impliestH(D′) = 0, whenceL 6= 〈e1〉.

Suppose now that there is a basis of eigenvectors{e1, e2} with eigenvaluesλ1 andλ2, respectively

(we allowλ1 = λ2). There are two stable subobjects, namely〈e1〉 and〈e2〉. Admissibility implies as

above thatL is neither of them. By rescalinge1 ande2 we can assume thatL = 〈e1 + e2〉.

Hence, we obtain in this case

ϕ =
(

λ1 0
0 λ2

)

andN = 0

and

Filr D =



















D if r ≤ 0,

〈( 1
1 )〉 if 1 ≤ r ≤ j,

(0) if r > j.

Conversely, givenλ1, λ2 ∈ Zp with vp(λ1) ≤ vp(λ2) and j = vp(λ1) + vp(λ2), the above

formulae give rise to an admissible(ϕ, N)-module overQp. We may again apply the Tate twist.

I do not state Proposition 7.11 of the book because the caseϕ =
(

λ 1
0 λ

)

seems to be missing. By

Dieudonné’s theorem we know thatϕ can be diagonalised after base change toQunr
p as a semi-linear

map. But, I do not see where an isomorphism as(ϕ, N)-module with any of the diagonal ones should

come from. In fact, it cannot exist, since the minimal polynom ofϕ on the non-diagonal module is

different from the minimal polynomial on the diagonal one. Could it be that themodules become

isomorphic overQunr
p ?
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8 Theorem of Fontaine-Colmez (Theorem B)

So far we have described the functor

Dst : RepQp
(GK) → MFK(ϕ, N), V 7→ Dst(V ).

Proposition 8.1 (Theorem B(1)) If V is a semi-stablep-adic Galois representation ofGK , then

Dst(V ) is an admissible filtered(ϕ, N)-module overK with ϕ andN as defined before. More pre-

cisely, we have the functor

Dst : Repst
Qp

(GK) → MFad
K (ϕ, N), V 7→ Dst(V ).

It is compatible with tensor products and duals.

Definition 8.2 For D a filtered(ϕ, N)-module overK, let

Vst(D) := {v ∈ Bst ⊗ D|ϕ(v) = v, N(v) = 0, 1 ⊗ v ∈ Fil0(K ⊗K0
(Bst ⊗ D))},

where the tensor productBst ⊗ D is the tensor product in the category of filtered(ϕ, N)-modules

overK.

We have thatVst(D) is a sub-Qp-vector space ofBst ⊗ D (that is clear), which is stable under

GK . For the latter we need thatGK respects the filtration onBdR (I think).

Proposition 8.3 (Theorem B(2)) If D is an admissible filtered(ϕ, N)-module overK, thenVst(D)

is a semi-stablep-adic representation ofGK . More precisely, we have the functor

Vst : MFad
K (ϕ, N) → Repst

Qp
(GK), D 7→ Vst(D).

It is compatible with tensor products and duals.

Finally we can state the main part of Theorem B.

Theorem 8.4 (Theorem B(3))The functor

Dst : Repst
Qp

(GK) → MFad
K (ϕ, N), V 7→ Dst(V ).

is an equivalence of categories with quasi-inverse

Vst : MFad
K (ϕ, N) → Repst

Qp
(GK), D 7→ Vst(D).
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