Oct. 16, 2008

Forschungsseminar über Fontaine-Ouyang: *l*-adic Galois representations (*Hélène Esnault*)

1. Profinite topology

1.1. K field, $K^s \supset K$ separable closure, then $G_K = \operatorname{Gal}(K^s/K) = \operatorname{Aut}(K^s/K) = \varprojlim_L \operatorname{Aut}(L/K)$, where L/K finite Galois. By definition, profinite. It induces a topology on G_K : coarsest topology for which surjective morphisms $G \twoheadrightarrow H$, with H finite with discrete topology, are continuous. Thus fundamental system of open neighbourhoods of 1 consists of the $\operatorname{Ker}(G \twoheadrightarrow H, H)$ finite. Thus $G = \sqcup_H \pi^{-1}(h)$, with $\pi^{-1}h \xrightarrow{\text{homeo}} \pi^{-1}(1)$, this Ker normal subgroup which is *both* closed and open. Further, G compact.

1.2. Assume E topological field, e.g. E is a finite extension of \mathbb{Q}_{ℓ} . $\mathbb{Z}_{\ell} = \lim_{n \to \infty} \mathbb{Z}/\ell^n$ is a profinite (abelian) group, thus has the profinite topology. It induces topology on \mathbb{Q}_{ℓ} where a fundamental system of open neighbourhoods of 0 consists of the $\ell^n \mathbb{Z}_{\ell}$. This topology is compatible with the multiplication on \mathbb{Q}_{ℓ} , thus \mathbb{Q}_{ℓ} topological field, and E/\mathbb{Q}_{ℓ} finite inherits a topology: a fundamental system of neighbourhoods of 0 is $\ell^n R$ where $R \subset E$ is the ring of integers.

1.3. V finite dimensional vector space over E finite over \mathbb{Q}_{ℓ} : topological vector space, where for any basis v_i , the topology is the product topology via $V \cong_E \oplus E \cdot v_i$. A fundamental system of open neighbourhoods of 0 consists of *lattices*, i.e. $L \subset V$ *R*-submodule of finite type with $L \otimes_R E = V$. In fact, choosing v_i , the lattices $\oplus \ell^n R \cdot v_i$ for all nis also a system of fundamental neighbourhoods of 0.

1.4. End_R(V) $\cong V^{\vee} \otimes_E V$ as a *E*-vector space inherits the topology of this vector space. Aut_E(V) \subset End_E(V) is defined by det $\neq 0$, thus is an open. A fundamental system of open neighbourhoods of 0 in End(V) consists then of the $L_1^{\vee} \otimes_R L_2$, i.e. of the $f: V \to V$ with $f(L_1) \subset L_2$ for two given lattices. Thus a fundamental system of neighbourhoods of 1 in Aut(V) consists of the $\mathcal{U}(L_1 \subset L_2) := \{f: V \to V \text{ with } f \in$ Aut(V), $f(L_1) \subset L_2\}$ for two given lattices L_i and with $L_1 \subset L_2$ (as 1 has to be in this neighbourhood).

Definition 1. A representation $G_K \to \operatorname{Aut}_E(V)$ is continuous if it is continuous for the profinite topology on both sides. It is called an ℓ -adic representation.

Proposition 2. Let $\rho : G_K \to \operatorname{Aut}_E(V)$ be a representation. Then ρ is an ℓ -adic representation (i.e. is continuous) if and only there is a lattice $L \subset V$ with a factorization

Proof. Assume ρ is continuous. Choose a lattice $L_0 \subset V$, then

$$\rho^{-1}\mathcal{U}(L_0 \subset L_0) = \{g \in G_K, \rho(g)(L_0) \subset L_0\}$$

is then an open subgroup, i.e. it contains a normal open subgroup, thus the set of residue classes $G/\rho^{-1}\mathcal{U}(L_0 \subset L_0)$ is finite, thus

$$\rho(G)(L_0) = (\rho(G)/\rho^{-1}\mathcal{U}(L_0 \subset L_0))(L_0)$$

is a lattice as well, and is invariant under G. The converse is obvious. $\hfill \Box$

2. FINITE FIELDS

 $K = \mathbb{F}_q$ finite field.

2.1. Abstract ℓ -adic representation.

Definition 3. Geometric Frobenius $\tau_K \in G_K, \lambda \mapsto \lambda^{\frac{1}{q}}$. So $G_K = \hat{\mathbb{Z}} \cdot \tau_K$.

Lemma 4. $\rho : G_K \to \operatorname{Aut}_E(V)$ ℓ -adic representation, then by ρ uniquely determined by $\rho(\tau_K) = u \in \operatorname{Aut}_E(V)$. Then for a $u \in \operatorname{Aut}_E(V)$, there is an ℓ -adic representation ρ with $\rho(\tau_K) = u$ if and only if the eigenvalues of u in $\overline{\mathbb{Q}}_\ell \supset E$ are ℓ -adic units, i.e. in S^{\times} for $S \supset R$ a finite extension.

Proof. The statement is equivalent to saying that u has to stabilize a lattice.

Definition 5. $P_{\rho}(t) = \det(1 - \tau_K \cdot t) \in \overline{\mathbb{Z}}_{\ell}[t]$ is the characteristic polynomial of ρ .

2.2. Weil conjectures. X/K variety. As

$$H^{i}(\bar{X}, \mathbb{Q}_{\ell}) := \varprojlim_{n} H^{i}(\bar{X}, \mathbb{Z}_{\ell}/n) \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell}$$

and G acts on $H^i(\bar{X}, \mathbb{Z}_{\ell}/\ell^n)$, Proposition 2 implies that the action of G coming from the geometric Frobenius on \bar{X} is an ℓ -adic representation.

- **Definition 6.** 1) Geometric Frobenius: $F : X \to X$ which is the identity on the topological space and is the morphism $f \mapsto f^q$ on \mathcal{O}_X . Induces the geometric Frobenius $F : " = "F \otimes 1$ on $X \otimes \overline{K}$.
 - 2) Arithmetic Frobenius: F_K : Spec $\overline{K} \to$ Spec \overline{K} induced from $\overline{K} \to \overline{K}, \lambda \mapsto \lambda^q$.
 - 3) Absolute Frobenius:

with $F_{abs} : \mathcal{O}_{\bar{X}} \to \mathcal{O}_{\bar{X}}, f \mapsto f^q$. Thus $F_{abs} = Id$ on any cohomology which depends only on the underlying topological space.

Lemma 7. $F = F_K^{-1}$ on $H^i(\bar{X}, \mathbb{Q}_\ell)$.

Definition 8. Zeta function: $Z_X(t) = \exp\left(\sum_{1}^{\infty} \frac{|X(\mathbb{F}_{q^n})|}{n} t^n\right) \in \mathbb{Z}[[t]].$

- **Theorem 9.** 1) Grothendieck-Lefschetz trace formula: $Z_X(t) = \prod_{l \in V} P_i(t)^{(-1)^{i+1}}$, with $P_i(t) = \det(1 Ft|H_c^i(\bar{X}, \mathbb{Q}_\ell))$. In particular, $Z_X(t) \in \mathbb{Q}_\ell(t)$.
 - 2) Deligne's algebraicity and integrality: $P_i \in \overline{\mathbb{Z}}[t]$ (usually not expressed, e.g. in [FO]).
 - 3) 1) with X smooth: functional equation coming from Poincaré duality.
 - 4 Deligne's purity: if X is smooth, then $P_i(t)$ is pure of weight *i*, *i*.e. $\forall \lambda$ eigenvalue of F on $H^i(\bar{X}, \mathbb{Q}_\ell)$, for all $\mathbb{Q}(\lambda) \subset \mathbb{C}$, $|\lambda| = q^{\frac{i}{2}}$.

Definition 10. Algebraic numbers λ such that for all $\mathbb{Q}(\lambda) \subset \mathbb{C}$, $|\lambda| = q^{\frac{\exists_i}{2}}$ are called Weil numbers.

2.3. Some Tannaka categories. Has $\operatorname{Rep}_{\mathbb{Q}_{\ell}}(G_K)$ the ℓ -adic representations with $E = \mathbb{Q}_{\ell}$. One defines $\operatorname{Rep}_{\mathbb{Q}_{\ell},GEO}(G_K)$ to be the full subcategory spanned subquotients of tensor products of $H^i(\bar{X}, \mathbb{Q}_{\ell})$ and its dual for some X projective smooth. By Deligne's purity, $H^i(\bar{X}, \mathbb{Q}_{\ell})$ is pure. But we do not know that τ_K -acts semisimply on $H^i(\bar{X}, \mathbb{Q}_{\ell})$. It is called the *semi-simplicity conjecture*. If τ_K acted semi-simply on $H^i(\bar{X}, \mathbb{Q}_{\ell})$, then any object in $\operatorname{Rep}_{\mathbb{Q}_{\ell},GEO}(G_K)$ would be a finite direct sum of irreducible objects, each of which of a specific weight. The

analog of the semi-simplicity conjecture in geometry is known, due to Deligne (Hodge II), and called *Théorème de semi-simplicité*: we fix Sa smooth variety over \mathbb{C} , and consider the category \mathcal{C} of polarizable \mathbb{Q} -variations of Hodge structures on some non-trivial open $U \subset S$, definable over \mathbb{Z} . As a category, it is Tannaka and semi-simple, due to the polarization. Inside, one can consider the full subcategory \mathcal{C}_{GEO} spanned by subquotients of Gauß-Manin systems of smooth projective morphisms $f: X \to S$. Then Deligne's theorem asserts that $\pi_1^{\text{top}}(U, u)$ acts semi-simply on $H^i(X_u, \mathbb{Z})$.

3. Two further key examples

3.1. Tate module of \mathbb{G}_m . Any K.

$$T_{\ell}(\mathbb{G}_m) = \varprojlim_n \mu_{\ell^n}(K^s)$$

with transition functions $\xi_{n+1} \in \mu_{\ell^{n+1}}(K^s) \mapsto \xi_n = \xi_{n+1}^{\ell} \in \mu_{\ell^n}(K^s)$. If char. $K = \ell$, then constant prosystem = 1. If char. $K \neq \ell$, then by choosing $\xi_n \neq 1$ defines $t := \lim_{k \to \infty} \xi_n \in T_\ell(\mathbb{G}_m)$ and $T_\ell(\mathbb{G}_m) = \mathbb{Z}_\ell \cdot t$, i.e. for $\lambda = (\lambda_n) \in \lim_{k \to \infty} \mathbb{Z}/\ell^n$, $\lambda \cdot t = (\xi_n^{\lambda_n})$. Define $V_\ell(\mathbb{G}_m) := T_\ell(\mathbb{G}_m) \otimes \mathbb{Q} =$ $\mathbb{Q}_\ell \cdot t$. Then G acts on $V_\ell(\mathbb{G}_m)$ via $g(t) = \chi(g) \cdot t, \chi(g) \in \mathbb{Z}_\ell^{\times}$ thus via a character $\chi : G \to \mathbb{Z}_\ell^{\times}$ called the *cyclotomic character*. As G compact, $\operatorname{Im}(\chi) \subset \mathbb{Z}_\ell^{\times}$ closed subgroup. $K = \mathbb{Q}_\ell$, a fortiori $K = \mathbb{Q}$, then χ surjective.

3.2. Tate module of an elliptic curve E. Any K of char. $\neq 2, 3$.

$$T_{\ell}(E) = \varprojlim_{n} E(K^{s})[\ell^{n}]$$

with transition functions $p_{n+1} \in E(K^s)[\ell^{n+1}] \mapsto p_n = \ell \cdot p_{n+1} \in E(K^s)[\ell^n]$. If $\ell \neq \operatorname{char} K$, then $E(K^s)[\ell^n] \cong_{\mathbb{Z}/\ell^n} \oplus_1^2 \mathbb{Z}/\ell^n$. if $\ell = \operatorname{char} K$, then either $E(K^s)[\ell^n] \cong \mathbb{Z}/\ell^n$ if E is ordinary, or $E(K^s)[\ell^n] = \{0\}$ if E is supersingular. One sets $V_{\ell}(E) = T_{\ell}(E) \otimes \mathbb{Q}$.

4. Local fields of residue characteristic $p \neq \ell$

K local field of perfect residue field k of char. p > 0. Then $K \subset K^{ur} \subset K^s$ with $K \subset K^{ur}$ maximal unramified extension. Yields the presentation

$$0 \to I_K \to G_K \to G_k \to 0$$

with $I_K := inertia$. Has

where $P_K := wild \ inertia$ is the pro-p subgroup of I_K . It defines

$$0 \to P_{K,\ell} \to G_K \to G_{K,\ell} \to 0$$

and

$$1 \to \mathbb{Z}_{\ell}(1) \to G_{K,\ell} \to G_k \to 1$$

For $\rho : G_K \to \operatorname{Aut}_E(L) \subset \operatorname{Aut}_E(V)$ an ℓ -adic representation, $N_1 = \operatorname{Ker}(\operatorname{Aut}_E(L) \to \operatorname{Aut}_E(L/\ell))$ is a pro- ℓ -group. As $\rho(P_{K,\ell})$ is a profinite group, with all finite quotients of order prime to ℓ , has

$$\rho(P_{K,\ell}) \xrightarrow{\operatorname{inj}} \operatorname{Aut}_R(L/\ell).$$

So

Lemma 11. There is a finite extension $K' \supset K$ such that ρ restricted to $G_{K'} \subset G_K$ factors through $G_{K',\ell}$.

- **Definition 12.** 1) ρ unramified or has good reduction if ρ factors through G_k .
 - 2) ρ has potentially good reduction if $\rho(I_K)$ is finite, i.e. if $\exists K' \supset K$ finite such that ρ restricted to $G_{K'}$ has good reduction.
 - 3) ρ is semi-stable if I_K acts unipotently, i.e. if semi-simplification has good reduction.
 - 4) ρ is potentially semi-stable if true after a finite extension $K' \supset K$.

Remark 13. Note notation comes from geometry: if X/K has a semistable model $\mathcal{X} \to \operatorname{Spec} R$, R ring of integers in K, then ℓ -adic representation on étale cohomology is semi-stable. So if one had a semi-stable reduction, every such representation would be potentially semi-stable.

Theorem 14 (Grothendieck). Assume $\mu_{\ell^{\infty}}(K)$ is finite. Then any ℓ adic representation is potentially semi-stable. It applies if k is finite, as $\mu_{\ell^{\infty}}(K) = \mu_{\ell^{\infty}}(k)$ by Hensel's lemma. Proof. May assume, after replacing K by $K' \supset K$ finite and \mathbb{Q}_{ℓ} by $E \supset \mathbb{Q}_{\ell}$ finite, $\rho: G_{K,\ell} \to \operatorname{Aut}_R(L)$ and eigenvalues of $\rho(t)$ with $\mathbb{Z}_{\ell}(1) = \mathbb{Z}_{\ell} \cdot t$ lies in R^{\times} . Write

$$\rho(t)(v) = a \cdot v$$

for some $a \in \mathbb{R}^{\times}$, $v \neq 0$. Furthermore, as $\mathbb{Z}_{\ell}(1)$ is a $G_{K,\ell}$ representation via conjugation, has

$$gtg^{-1} = t^{\chi_{\ell}(g)}$$
 for some character $\chi_{\ell} : G_{K,\ell} \to \mathbb{Z}_{\ell}^{\times}$

 \mathbf{SO}

$$\rho(gtg^{-1})(v) = \rho(t^{\chi_{\ell}(g)})(v)$$

i.e.

$$\rho(t)(\rho(g^{-1})(v)) = a^{\chi_{\ell}(g)} \cdot \rho(g^{-1})(v).$$

So if a is an eigenvalue of $\rho(t)$, so is $a^{\chi_{\ell}(g)}$ for all $g \in G_{K,\ell}$. On the other hand

$$\mu_{\ell^{\infty}}(K)$$
 finite \implies Im $(\chi_{\ell}) \subset \mathbb{Z}_{\ell}^{\times}$ infinite.

Since V is finite dimensional, a has to be a root of 1. Thus $\rho(t)$ is quasi-unipotent.

Corollary 15 (Grothendieck's monodromy theorem). Let K be a local field. Then any ℓ -adic representation coming from algebraic geometry is potentially semi-stable.

Proof. An algebraic variety X is defined over a field of finite type $K_0 \subset K$ over the prime field \mathbb{Q} or \mathbb{F}_p . Then its closure $K_0 \subset K_1 \subset K$ in K is a complete discrete valuation field with residue field k_1 of finite type over \mathbb{F}_p . Take perfect closure k_2 of k_1 , and K_2 with residue field k_2 containing K_0 . Then $\mu_{\ell^{\infty}}(K_2) = \mu_{\ell^{\infty}}(k_2)$ is finite. \Box

Theorem 16. Assume k = k. Then any potentially semi-stable ℓ -adic representation of G_K comes from geometry.

Proof. Has $G_K = I_K$.

I: Assume ρ semi-stable. Then, since the action of $P_{K,\ell}$ is finite, G_K acts through $\mathbb{Z}_{\ell}(1)$. So V is a direct sum of Jordan blocks. Since a rank n Jordan block is $\operatorname{Sym}^n(V_2)$ where V_2 is a rank 2 Jordan block, enough to do a rank 2 Jordan block.

Let E be an elliptic curve over K such that

$$E(K^s) \cong (K^s)^{\times} / \pi^{\mathbb{Z}},$$

where $\mathfrak{m}_K \subset K$ is the maximal ideal, and π is a uniformizer, i.e. a generator of \mathfrak{m}_K . Write

$$E(K^s)[\ell^n] = \{a \in (K^s)^{\times}, \exists m, a^{\ell^n} = \pi^m\}/\pi^{\ell^n},$$

which yields

$$0 \to \mu_{\ell^n}(K) \to E(K^s)[\ell^n] \to \mathbb{Z}/\ell^n \to 0$$
$$a \mapsto m \mod \ell^n.$$

Then

$$\alpha = (\alpha_n) \in T_{\ell}(E), \ \alpha_n \in E(K^s)[\ell^n], \ \alpha_{n+1}^{\ell} = \alpha_n$$

yields

$$0 \to \mathbb{Z}_{\ell}(1) \to T_{\ell}(E) \to \mathbb{Z}_{\ell} \to 0$$

and thus

$$0 \to \mathbb{Q}_{\ell}(1) \to V_{\ell}(E) \to \mathbb{Q}_{\ell} \to 0.$$

II: Assume ρ potentially semi-stable. Then ρ restricted to $G_{K'}, K' \supset K$ finite is semi-stable. let A be the Weil restriction of E/K'. Then $V_{\ell}(A) = \operatorname{Ind}_{K}^{K'} V_{\ell}(E)$ and it does it.