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Forschungsseminar iiber Fontaine-Ouyang: /(-adic Galois
representations (Héléne Esnault)

1. PROFINITE TOPOLOGY

1.1. K field, K* D K separable closure, then G = Gal(K*/K) =
Aut(K*/K) = lim Aut(L/K), where L/K finite Galois. By definition,
profinite. It induces a topology on Gg: coarsest topology for which
surjective morphisms G — H, with H finite with discrete topology,
are continuous. Thus fundamental system of open neighbourhoods of
1 consists of the Ker(G — H, H) finite. Thus G = Ugn *(h), with

7=tk 2220, =1(1), this Ker normal subgroup which is both closed and

open. Further, G compact.

1.2. Assume E topological field, e.g. FE is a finite extension of Q.
Zy = lim Z/0" is a profinite (abelian) group, thus has the profinite
topology. It induces topology on Q, where a fundamental system of
open neighbourhoods of 0 consists of the ¢"Z,. This topology is com-
patible with the multiplication on Qg, thus Q, topological field, and
E/Qy finite inherits a topology: a fundamental system of neighbour-
hoods of 0 is /"R where R C E is the ring of integers.

1.3. V finite dimensional vector space over F finite over Q: topolog-
ical vector space, where for any basis v;, the topology is the product
topology via V =g &F - v;. A fundamental system of open neighbour-
hoods of 0 consists of lattices, i.e. L C V R-submodule of finite type
with L ® g £ = V. In fact, choosing v;, the lattices ©¢{"R - v; for all n
is also a system of fundamental neighbourhoods of 0.

1.4. Endg(V) 2 VY ®pV as a E-vector space inherits the topology of
this vector space. Autg(V) C Endg(V) is defined by det # 0, thus is an
open. A fundamental system of open neighbourhoods of 0 in End(V)
consists then of the LY ®p Lo, i.e. of the f:V — V with f(L1) C Le
for two given lattices. Thus a fundamental system of neighbourhoods
of 1 in Aut(V) consists of the U(Ly C Lo) :={f : V — V with f €
Aut(V), f(L1) C Lo} for two given lattices L; and with L; C Ly (as 1
has to be in this neighbourhood).

Definition 1. A representation G — Autg(V) is continuous if it is
continuous for the profinite topology on both sides. It is called an (-adic
representation.
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Proposition 2. Let p : Gx — Autg(V) be a representation. Then p
is an (-adic representation (i.e. is continuous) if and only there is a
lattice L C 'V with a factorization

p

Gk

T

AutR(L) = hLHn AutR(L/E”)

Proof. Assume p is continuous. Choose a lattice Ly C V, then

pU(Ly C Lo) = {g € Gk, p(g)(Lo) C Lo}

is then an open subgroup, i.e. it contains a normal open subgroup,
thus the set of residue classes G/p~'U(Ly C Ly) is finite, thus

p(G)(Lo) = (p(G)/p~'U(Ly C L)) (Lo)

is a lattice as well, and is invariant under G. The converse is obvious.

0

2. FINITE FIELDS
K =T, finite field.

2.1. Abstract /(-adic representation.

Definition 3. Geometric Frobenius T € G, A — )\%. SoGg = Z-TK.

Lemma 4. p : Gg — Autg(V) (l-adic representation, then by p
uniquely determined by p(tx) = uw € Autg(V). Then for a u €
Autg(V), there is an (-adic representation p with p(tx) = w if and
only if the eigenvalues of u in Q; O E are (-adic units, i.e. in S* for
S D R a finite extension.

Proof. The statement is equivalent to saying that u has to stabilize a
lattice. (]

Definition 5. P,(t) = det(1 — 75 - t) € Z[t] is the characteristic
polynomial of p.

2.2. Weil conjectures. X/K variety. As
HY(X, Q) :=lim H'(X, Ze/n) @z, Q

n

and G acts on H'(X,Z/(™), Proposition 2 implies that the action of G
coming from the geometric Frobenius on X is an /-adic representation.
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Definition 6. 1) Geometric Frobenius: F': X — X which is the
identity on the topological space and is the morphism f +— f4
on Ox. Induces the geometric Frobenius F': “ =" F @1 on
XQK. B B

2) Arithmetic Frobenius: Fy : Spec K — Spec K induced from
K — K \— )\,
3) Absolute Frobenius:
Fa_bs
“LXen K%
Spec K LN Spec K

with Fos : O — Ox, f — f9. Thus F,,s = Id on any coho-
mology which depends only on the underlying topological space.

Lemma 7. F = F' on H{(X,Qy).
Definition 8. Zeta function: Zx(t) = exp( ;" X )‘t“) € Z[[t]].

Theorem 9. 1) Grothendieck-Lefschetz trace formula: Zx(t) =
[T P:(t) V" with Py(t) = det(1 — Ft|H(X,Qy)). In particu-
lar, Zx(t) € Qu(t).

2) Deligne’s algebraicity and integrality: P; € Z[t] (usually not
expressed, e.g. in [FO]).

3) 1) with X smooth: functional equation coming from Poincaré
duality.

4 Deligne’s purity: if X is smooth, then P;(t) is pure of weight
i, i.e. VA eigenvalue of F on H'(X,Qy), for all Q(\) Cc C
Al = g2

Definition 10. Algebraic numbers X such that for all Q(X\) C C, |A\| =

35
q2 are called Weil numbers.

2.3. Some Tannaka categories. Has Repg,(Gx) the f-adic repre-
sentations with £/ = Q. One defines Repg, cro(Gx) to be the full
subcategory spanned subquotients of tensor products of H'(X,Q,) and
its dual for some X projective smooth. By Deligne’s purity, H'(X, Q)
is pure. But we do not know that Tx-acts semisimply on H* (X, Q).
It is called the semi-simplicity conjecture. If T acted semi-simply on
H'(X,Qy), then any object in Repg, ¢ro(Gx) would be a finite direct
sum of irreducible objects, each of which of a specific weight. The
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analog of the semi-simplicity conjecture in geometry is known, due to
Deligne (Hodge 1I), and called Théoréme de semi-simplicité: we fix S
a smooth variety over C, and consider the category C of polarizable
Q-variations of Hodge structures on some non-trivial open U C S, de-
finable over Z. As a category, it is Tannaka and semi-simple, due to
the polarization. Inside, one can consider the full subcategory Coro
spanned by subquotients of Gauf-Manin systems of smooth projective
morphisms f : X — S. Then Deligne’s theorem asserts that m;°>(U, u)
acts semi-simply on H'(X,,Z).

3. TWO FURTHER KEY EXAMPLES

3.1. Tate module of G,,. Any K.
T3(Gn) = lim uen ()

with transition functions &,1 € g1 (K*) — &, = &4,y € pen (K*). If
char. K =/, then constant prosystem = 1. If char. K # ¢, then by
choosing &, # 1 defines t := linn &n € Ty(Gy,) and Ty(G,,) = Zy - £, i.e.
for A= (A,) € lim Z/0" At = (&), Define Vy(G,,) := Ty(G,,) @Q =
Q¢ -t. Then G acts on Vi(Gy,) via g(t) = x(g) - t, x(9) € Z; thus via a
character x : G — Z; called the cyclotomic character. As G compact,
Im(x) C Z; closed subgroup. K = Q, a fortiori K = Q, then x
surjective.

3.2. Tate module of an elliptic curve E. Any K of char. # 2, 3.
7,(E) = lim B(K*) (0"

n

with transition functions p,.; € E(K®)[("™'] — p, = (- p,y1 €
E(K®)[¢"]. If £ # charK, then E(K*®)[("] 2z ®IZ/0". if { = char.K,
then either E(K*®)[¢"] = Z/¢" if E is ordinary, or E(K*)[¢("] = {0} if E
is supersingular. One sets Vy(E) = T)(E) @ Q.

4. LOCAL FIELDS OF RESIDUE CHARACTERISTIC p # /

K local field of perfect residue field k& of char. p > 0. Then K C
K" C K?® with K C K" maximal unramified extension. Yields the
presentation

0—>]K—>GK—>Gk—>0



with I :=inertia. Has

Zo(1) = Zy(1)
1 Py Ix Z/(1) = [ppy Ze(1) —= 1
= inj O ln‘]T
1 Py Py v syZo(l) —1

where Py :=wild inertia is the pro-p subgroup of Ix. It defines
0— Pxy— Gg = Gre—0

and
1 —Zi(1) - Ggy— G — 1

For p : Gk — Autg(L) C Autg(V) an f-adic representation, N; =
Ker(Autg(L) — Autg(L/l)) is a pro-f-group. As p(Pk ) is a profinite
group, with all finite quotients of order prime to ¢, has

p(Prce) 2 Autp(L/0).
So

Lemma 11. There is a finite extension K' O K such that p restricted
to Ggr C Gk factors through Gk .

Definition 12. 1) p unramified or has good reduction if p factors

through Gi.

2) p has potentially good reduction if p(I) is finite, i.e. if AK' D
K finite such that p restricted to Gk has good reduction.

3) p is semi-stable if I acts unipotently, i.e. if semi-simplification
has good reduction.

4) p is potentially semi-stable if true after a finite extension K' D
K.

Remark 13. Note notation comes from geometry: if X/K has a semi-
stable model X — Spec R, R ring of integers in K, then ¢-adic represen-
tation on étale cohomology is semi-stable. So if one had a semi-stable
reduction, every such representation would be potentially semi-stable.

Theorem 14 (Grothendieck). Assume pg(K) is finite. Then any (-
adic representation is potentially semi-stable. It applies if k is finite,
as e (K) = pe (k) by Hensel’s lemma.
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Proof. May assume, after replacing K by K’ D K finite and Q, by E D
Qy finite, p : Gk — Autg(L) and eigenvalues of p(t) with Z,(1) = Z,-t
lies in R*. Write

p(t)(v) =a-v
for some a € R*, v # 0. Furthermore, as Z,(1) is a G ¢ representation
via conjugation, has
gtg~! = 19 for some character yy : Gky— L]

SO

plgtg™")(v) = p(t*@))(v)

p(t)(pg~ ") (v)) = a9 - p(g~ ") (v).

So if a is an eigenvalue of p(t), so is aX/9) for all g € Gk, On the
other hand

fuese (K) finite == Im(x,) C Z; infinite.

Since V' is finite dimensional, a has to be a root of 1. Thus p(t) is
quasi-unipotent. O

Corollary 15 (Grothendieck’s monodromy theorem). Let K be a local
field. Then any (-adic representation coming from algebraic geometry
15 potentially semi-stable.

Proof. An algebraic variety X is defined over a field of finite type Ky C
K over the prime field Q or F,. Then its closure Ky C K; C K in K
is a complete discrete valuation field with residue field k; of finite type
over [F,. Take perfect closure ky of ki, and Ky with residue field ks
containing Ky. Then iy (Ks) = pugee (k2) is finite. O

Theorem 16. Assume k = k. Then any potentially semi-stable (-adic
representation of G comes from geometry.

Proof. Has G = I.

I: Assume p semi-stable. Then, since the action of Pk is finite, Gk
acts through Z,(1). So V' is a direct sum of Jordan blocks. Since a
rank n Jordan block is Sym"(V2) where V5 is a rank 2 Jordan block,
enough to do a rank 2 Jordan block.

Let E be an elliptic curve over K such that

E(K*) = (K*)* /7",
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where myg C K is the maximal ideal, and 7 is a uniformizer, i.e. a
generator of my. Write

E(K*[0"] ={a € (K*)*, Im, " = 7rm}/7r€n,
which yields
0— ppm(K) — E(K)["] = Z/" — 0

a — m mod /™.

Then
a=(a,) € TYE), a, € E(K®)[("], o, = an
yields
0— Z(1) = To(E) — Z¢ — 0
and thus

0— Q1) = Vi(E) — Q¢ — 0.

II: Assume p potentially semi-stable. Then p restricted to Gg/, K’ O K
finite is semi-stable. let A be the Weil restriction of E/K’. Then

Vi(A) = Ind€'V,(E) and it does it. O



