THE ACTION OF G_K ON $\operatorname{Frac}(\mathcal{R})$ AND (φ, Γ) -MODULES

JUAN MARCOS CERVIÑO

Let K be a p-adic field, that is the fraction field of a complete d.v.r. of characteristic 0, with perfect residue field k of characteristic p > 0. We denote by $\mathcal{O}_{K_0} := W(k)$ the ring of Witt vectors over k, and by K_0 its fraction field, which we identify as a subfield of K.

As in the previous talk, $C := \hat{K}$ with normalized valuation v, such that v(p) = 1.

For any subfield $L \subset C$, we can restrict the valuation on C to L, and have therefore, as usual, the notions of: ring of integers \mathcal{O}_L , maximal ideal \mathfrak{M}_L and residue field k_L .

Throughout the lecture, we denote for any algebraic field extension L of $K_0 G_L := Gal(\bar{K}/L)$ and $H_L := Gal(\bar{K}/L^{\text{cyc}})$.

Recall the ring $\mathcal{R} := R(\mathcal{O}_{\bar{K}}/p\mathcal{O}_{\bar{K}}) = R(\mathcal{O}_C/p\mathcal{O}_C)$ introduced in the last talk, with fraction field \mathcal{C} . The valuation $v_{\mathcal{R}}((x^{(n)})) := v_C(x^{(0)})$ defines a valuation on \mathcal{C} , which makes it a complete, non-archimedian, algebraically closed field of characteristic p (cf. last lecture).

We have seen so far in this seminar, how one can explain (*p*-adic or mod *p*) Galois representations of G_E (*E* of positive characteristic), in terms of certain "étale φ modules". Our goal in this talk is to give an equivalence of categories between Galois representations of G_K (for *K* **a** *p*-adic field) and (φ , Γ)-modules.

1. The action of Galois on $\mathcal R$

Proposition 1.1. Let *L* be an extension of K_0 contained in \overline{K} . Then $\mathcal{R}^{G_L} = R(\mathcal{O}_L/p\mathcal{O}_L)$ (and therefore also $\mathcal{C}^{G_L} = \operatorname{Frac}(R(\mathcal{O}_L/p\mathcal{O}_L)))$). Moreover, the residue field of \mathcal{R}^{G_L} is k_L , the residue field of *L*.

Proof. Take $x \in \mathcal{R}^{G_L}$ and write it in sequence representation: $x = (x^{(n)})$, where $x^{(n)} \in \mathcal{O}_C$. The Galois group acts coordinatewise on \mathcal{R} , and therefore $x^{(n)^g} = x^{(n)}$, which means $x^{(n)} \in \mathcal{O}_C^{G_L}$, for all $n \in \mathbb{N}$.

Now, $\mathcal{O}_C^{G_L} = \mathcal{O}_{C^{G_L}} = \mathcal{O}_{\hat{L}} = \varprojlim \mathcal{O}_{\hat{L}}/p^n \mathcal{O}_{\hat{L}} = \varprojlim \mathcal{O}_L/p^n \mathcal{O}_L$; from which it follows $\mathcal{R}^{G_L} = R(\mathcal{O}_L/p\mathcal{O}_L).$

Let $[\cdot]: \bar{k} \to \mathcal{R}$ be the Teichmüller lift. Since the residue field of R is \bar{k} , we get by taking G_L -invariants to $\bar{k} \stackrel{[\cdot]}{\hookrightarrow} R \twoheadrightarrow \bar{k}$ the identity map on k_L : $k^{G_L} = k_L \hookrightarrow R^{G_L} \twoheadrightarrow k_L$; hence k_L is the residue field of R.

Corollary 1.2. If $v(L^{\times})$ is discrete, then $R^{G_L} = k_L$.

Proof. We already know that $k_L \subset R^{G_L}$. Hence we only need to show that $x \in R^{G_L}$ with v(x) > 0 is only satisfied for the zero element.

For such an element, we have $v(x) = v_C(x^{(0)}) = p^n v(x^{(n)}) > 0$, from which follows that $v(x^{(n)}) \xrightarrow{n \to \infty} 0$. Since the valuation is assumed to be discrete, there exists a non-negative integer N_0 , such that for all $n \ge N_0$, $x^{(n)} = 0$, but then all coordinates happen to be zero, and so x = 0.

2.
$$R(\mathcal{O}_{K_0^{\text{cyc}}}/p\mathcal{O}_{K_0^{\text{cyc}}}), \varepsilon \text{ and } \pi$$

Take $\varepsilon := (\varepsilon^{(n)})_{n \ge 0} \in \mathcal{R}_0^{\text{cyc}} := R(\mathcal{O}_{K_0^{\text{cyc}}}/p\mathcal{O}_{K_0^{\text{cyc}}})$ a compatible system of primitive p^n -th roots of unity:

$$\varepsilon^{(0)} = 1, \ \varepsilon^{(1)} \neq 1 \text{ and } (\varepsilon^{(n+1)})^p = \varepsilon^{(n)}, \forall n \ge 1;$$

which we fix throughout this lecture. Set $K_0^{\text{cyc}} := \varinjlim K_0(\varepsilon^{(n)})$ and $\pi := \varepsilon - 1 \in \mathcal{R}_0^{\text{cyc}}$.

Lemma 2.1. The element π has valuation greater than 1. In particular, $\varepsilon :=$ $(\varepsilon^{(n)})_{n\in\mathbb{N}}$ is a unit of \mathcal{R}_0^{cyc} .

Proof.

$$v(\pi) = v(\pi^{(0)}) = v(\lim_{m \to \infty} (\varepsilon^{(m)} - 1)^{p^m}) = \frac{p}{p-1} > 1,$$

since we know, from the classical cyclotomic theory, that

$$v(\varepsilon^{(m)} - 1) = \frac{1}{(p-1)p^{m-1}}, \ \forall m \ge 1.$$

Remark 2.2. (1) From Proposition 1.1 we know, that

$$\mathcal{R}^{G_{K_0^{cyc}}} = \mathcal{R}_0^{cyc} \stackrel{dfn.}{=} R(\mathcal{O}_{K_0^{cyc}}/p\mathcal{O}_{K_0^{cyc}}).$$

- (2) Since the Galois action on \mathcal{R} is continuous, \mathcal{R}_0^{cyc} is still complete. The element π has valuation greater than one, and so $k[[\pi]] \subset \mathcal{R}_0^{cyc}$.
- Similarly, defining $\mathcal{C}_0^{cyc} := \operatorname{Frac}(\mathcal{R}_0^{cyc})$, we get that $k((\pi)) \subset \mathcal{C}_0^{cyc}$. (3) \mathcal{R}_0^{cyc} is perfect; since for any $x = (x^{(n)})_{n \in \mathbb{N}} \in \mathcal{R}_0^{cyc}$ one can define $y := (y^{(n)})_{n \in \mathbb{N}}$ as $y^{(n)} := x^{(n+1)}$, and therefore $y \in \mathcal{R}_0^{cyc}$ and one easily checks that $x - y^p = 0.$
- (4) Summing up the remarks above, we have the following inclusions

$$\widetilde{k[[\pi]]^{rad}} \subset \mathcal{R}_0^{cyc}, \ \widetilde{k((\pi))^{rad}} \subset \mathcal{C}_0^{cyc};$$

where the subscript rad denotes the radical completion in the algebraically closed field C.

We set from now on $E_0 := k((\pi))$ and $\mathcal{O}_{E_0} := k[[\pi]]$.

Theorem 2.3. We have indeed equalities:

$$\widehat{k[[\pi]]^{rad}} = \mathcal{R}_0^{cyc}, \ \widehat{k((\pi))^{rad}} = \mathcal{C}_0^{cyc}.$$

Proof. We need to prove that $\mathcal{O}_{E_0^{\mathrm{rad}}} := k[[\pi]]^{\mathrm{rad}}$ is dense in $\mathcal{R}_0^{\mathrm{cyc}} = \varprojlim \mathcal{O}_{K_0^{\mathrm{cyc}}}/p\mathcal{O}_{K_0^{\mathrm{cyc}}}$. For this, it suffices to show that $\theta_m(\mathcal{O}_{E_0^{\mathrm{rad}}}) = \mathcal{O}_{K_0^{\mathrm{cyc}}}/p\mathcal{O}_{K_0^{\mathrm{cyc}}}, \forall m \in \mathbb{N}_0^{\checkmark}$. The inclusion

 \subset is clear, so we prove \supset .

 $\mathcal{O}_{K_0^{\text{cyc}}}$ equals the union (in $\mathcal{R}_0^{\text{cyc}}$) of the rings $\mathcal{O}_{K_0}[\pi_n]$, where $\pi_n := \varepsilon^{(n)} - 1$. Denote by $\overline{\pi}_n$ the image of π_n under the projection map $\mathcal{O}_{K_0^{\text{cyc}}} \to \mathcal{O}_{K_0^{\text{cyc}}}/p\mathcal{O}_{K_0^{\text{cyc}}}$; hence $\overline{\pi}_n = \varepsilon_n - 1$. Since $\mathcal{O}_{K_0^{\text{cyc}}} / p \mathcal{O}_{K_0^{\text{cyc}}}$ is a k-algebra generated by the $\overline{\pi}_n$ ($\mathcal{O}_{K_0} = W(k)$) and k is perfect), the claim follows, if we prove that

$$\overline{\pi}_n \in \theta_m(\mathcal{O}_{E_0^{\mathrm{rad}}}) = \theta_m(k[[\pi]]^{\mathrm{rad}}) \; \forall m, n \in \mathbb{N}_0.$$

Since for any $s \in \mathbb{Z}$, $\pi^{p^s} \in k[[\pi]]^{\mathrm{rad}}$ and $\pi^{p^s} = (\pi^{n-s})_{n \in \mathbb{N}_0} = \varepsilon^{p^s} - 1 = (\varepsilon^{(n-s)}) - 1 = (\varepsilon_{n-s} - 1);$ where $\varepsilon^{(n)} = 1$ for n < 0. Now, $\theta_m(\pi^{p^{m-n}}) = \varepsilon_{m-(m-n)} - 1 = \varepsilon_n - 1 = \varepsilon_n$ $\overline{\pi}_n$.

Remark 2.4. At several stages (for example in the proof above), one can prove the statement using the $\epsilon^{(n)}$'s instead of the π_n 's - something which may be easier in some cases.¹

3. A fundamental Theorem

Let E_0^{s} be the separable closure of $E_0 = k((\pi)) \subset \mathcal{C}_0^{\mathrm{cyc}}$ in \mathcal{C} .

Theorem 3.1. (1) E_0^s is dense in \mathcal{C} , and stable under G_{K_0} .

(2) There exists an isomorphism $\operatorname{Gal}(\overline{K}/K_0^{cyc}) \xrightarrow{\sim} \operatorname{Gal}(E_0^s/E_0)$, given by restricting the natural action of $\operatorname{Gal}(\overline{K}/K_0^{cyc})$ on \mathcal{C} to the subfield E_0^s .

Proof. Since by Krasner's Lemma $\widehat{E_0^s} = \widehat{\overline{E_0}}$, it suffices to show the density of $\overline{E_0}$ in \mathcal{C} , or what amounts to the same, the density of $\mathcal{O}_{\overline{E_0}}$ in \mathcal{R} .

As in the proof of Theorem 2.3, we need to show that $\theta_m(\mathcal{O}_{\overline{E_0}}) = \mathcal{O}_{\overline{K}}/p\mathcal{O}_{\overline{K}}$, for all $m \in \mathbb{N}_0$. Since $\overline{E_0}$ is algebraically closed, the general claim follows from the case m = 0; which we now prove.

Since

$$\mathcal{O}_{\overline{K}} = \varinjlim_{\substack{[L:K_0] < \infty \\ L/K_0 \text{ Galois}}} \mathcal{O}_L,$$

it suffices to check that $\theta_0(\mathcal{O}_{\overline{E_0}}) \supset \mathcal{O}_L/p\mathcal{O}_L$, for any such L.

Put $K_{0,n} := K_0(\varepsilon^{(n)})$, $L_n := L \cdot K_{0,n}$ and $J_n := \operatorname{Gal}(L_n/K_{0,n})$. The decreasing sequence of finite Galois groups J_n stabilizes to the finite group, say, J - we assume from now on, n to be big enough, so that $J_n = J$. Since $\overline{k} \subset \mathcal{O}_{\overline{E_0}}$, without loss of generality, we may replace K_0 by a finite algebraic extension K'_0 , so that all the extensions L_n/K'_0 are totally ramified. By abuse of notation we keep using K_0 for K'_0 .

Since $L_n/K_{0,n}$ is totally unramified, we can write $\mathcal{O}_{L_n} = \mathcal{O}_{K_{0,n}}[\nu_n]$, for nu_n a uniformizer of L_n . From Theorem 2.3 we have $\theta_0(\mathcal{O}_{\overline{E_0}}) \supset \mathcal{O}_{K_{0,n}}/p\mathcal{O}_{K_{0,n}}$, hence we need only to show that there exists an n, such that $\mathcal{O}_{L_n}/p\mathcal{O}_{L_n} \ni \overline{\nu_n}$ lies in $\theta_0(\mathcal{O}_{\overline{E_0}})$.

The case $J = {\text{Id}}$ trivially holds; so we assume from now on |J| := d > 1. Let $P_n \in K_{0,n}[X]$ be the minimal (Eisenstein) polynomial of ν_n (of degree d = absJ):

$$P_n(X) = \prod_{g \in J} (X - g(\nu_n)).$$

By Lemma 3.2 below, we know that for any $1 \neq g \in J$, $\lim_{n\to\infty} v(g(\nu_n) - \nu_n) = 0$. Let n be large enough, so that furthermore $(J_n = J \text{ should still hold}) v(g(\nu_n) - \nu_n) < 1/d$ is fulfilled for all $g \in J \setminus \{\text{Id}\}$.

We have the following diagram, where we choose Q to be a lift of $\overline{P_n}$ over $\mathcal{O}_{\overline{E_0}}[X]$ (monic and of degree d).

¹This Remark was done by Gebhard during the talk.

by closest to ν_n we mean:

(1)
$$v(\beta - \overline{\nu_n}) \ge v(\beta - g(\overline{\nu_n})), \ \forall g \in J.$$

It may be necessary to make some comments on the meaning of v in the inequalities (1). For any $x \in \mathcal{O}_{\bar{K}}/p\mathcal{O}_{\bar{K}}$, pick a lift $\tilde{x} \in \mathcal{O}_{\bar{K}}$ and define

$$v(x) := \begin{cases} 1 & \text{if } 1 < v(\tilde{x}) < \infty \\ v(\tilde{x}) & \text{else.} \end{cases}$$

This definition is independent of the lift \tilde{x} , and hence the meaning of (1) is explained.

Since α is a root of Q, $v(\overline{P_n}(\beta)) \geq 1$. Choose a lift $b \in \mathcal{O}_{\bar{K}}$ of β . Hence, we have $v(P_n(b)) = v(\overline{P_n}(\beta)) \ge 1$, and so $v(P_n(b)) \ge 1$. This means, that there exists a $g_0 \in J$ such that $v(b - g_0(\nu_n)) \geq 1/d$. It follows then from (1) that $v(\beta - \overline{\nu_n}) \geq 1/d$, and since $v(\nu_n - g(\nu_n)) < 1/d$ for any Id $\neq g \in J$, g_0 must be necessarily Id. Therefore $v(b - \nu_n) > v(b - g(\nu_n))$ for all $1 \neq g \in J$; which by Krasner's Lemma implies that $\nu_n \in K_{0,n}(b)$ (indeed $\nu_n \in \mathcal{O}_{K_{0,n}(b)}$, since it was assumed from the very beginning to be integral). The element ν_n can be represented by a polynomial in b with coefficients in $\mathcal{O}_{K_{0,n}}$, hence we need to lift b and the coefficients, i.e. the elements of $\mathcal{O}_{K_{0,n}}$. Since b reduces to β , we have $\nu_n \in \mathcal{O}_{K_{0,n}}/p\mathcal{O}_{K_{0,n}} = k[\overline{\epsilon^{(n)}},\beta]$. Therefore $\overline{\nu_n} \in \theta_0(\mathcal{O}_{E_0(\pi^{1/p^n})}(\alpha))$, which proves the assertion.

Since $\widehat{E}_0^s = \mathcal{C}$, and G_K acts naturally on \mathcal{C} , we get an action on \widehat{E}_0^s . We prove now the stability of E_0^s with respect to the action of G_K , which gives an action of G_K on E_0^{s} .

Let $x \in E_0^s$, with separable minimal polynomial $P_x(T) \in E_0[T]$, then for any $g \in G_K$, g(x) is a root of the separable polynomial $(P_x)^g$. Therefore, for the stability of E_0^s we need only to show that the coefficients, i.e. the elements of E_0 , are stable under the Galois action. But this is clear, since $g(\pi) = (1 + \pi)^{\chi(g)} - 1 \in k((\pi)) = E_0$.

Summing up, we obtain a group homomorphism $G_K = \operatorname{Gal}(\overline{K}/K_0^{\operatorname{cyc}}) \to \operatorname{Gal}(E_0^{\operatorname{s}}/E_0),$ simply by restriction. The last claim of the Theorem is that this map is an isomorphism.

Injectivity: Let $g \in G_K$ be in the kernel. Since the action of Galois is continuous, this element acts also trivially on $\mathcal{C} = \widehat{E}_0^{s}$: for any $x = (x^{(n)}) \in \mathcal{C}$, $q(x^{(n)}) = x^{(n)} \in C = \widehat{\overline{K}}$ for all n. But the map $\tilde{\theta_0} : \mathcal{C} \to C$ is surjective (i.e. any element of C can be the zeroth coordinate of an element in \mathcal{C}), therefore g acts trivially on C and is consequently the identity map.

Surjectivity: By injectivity of the restriction map, we may identify G_K with a closed subgroup H of $\operatorname{Gal}(E_0^{\mathrm{s}}/E_0)$. If $H \neq \operatorname{Gal}(E_0^{\mathrm{s}}/E_0)$, then $(E_0^{\mathrm{s}})^H$ would define a non-trivial separable extension of E_0 inside $(\mathcal{C})^H = (\operatorname{Frac}(\mathcal{R}))^H = \widehat{E_0^{\mathrm{rad}}}$; which is impossible after Lemma 3.3 below.

We prove the two Lemmas used in the proof of the theorem.

Lemma 3.2. With notation as in the proof of Theorem 3.1. We have for any $Id \neq g \in J$ that $\lim_{n\to\infty} v(\nu_n - g(\nu_n)) = 0$.

Proof. Since $\mathcal{O}_{L_n} = \mathcal{O}_{K_{0,n}}[\nu_n]$, we know that the discriminant $\mathfrak{D}_{L_n/K_{0,n}}$ is generated by $P'_n(\nu_n) = \prod_{\mathrm{Id}\neq g\in J}(\nu_n - g(\nu_n))$. In Lecture 7, using Herbrandt's integrals, we see that $v(\mathfrak{D}_{L_n/K_{0,n}}) \to 0$ as n tends to infinity; which proves our claim, since

$$v(\mathfrak{D}_{L_n/K_{0,n}}) = \sum_{\mathrm{Id}\neq g\in J} v(\nu_n - g(\nu_n)).$$

Lemma 3.3. Let E be a complete field of characteristic p > 0. There is no nontrivial separable extension of E inside $\widehat{E^{rad}}$.

Proof. Let E' be a separable extension of E inside $\widehat{E^{\mathrm{rad}}}$. Denote by $\sigma_1, \ldots, \sigma_d$ the distinct embeddings of E' into E^{s} (d = [E' : E]). We extend each map σ_i to a map defined on E'^{rad} by setting $\sigma_i(a) := (\sigma_i(a^{p^n}))^{p^{-n}}$. By continuity, we get a map $\widehat{E'^{\mathrm{rad}}} = \widehat{E^{\mathrm{rad}}} \to \widehat{\overline{E}}$, which is the identity on E^{rad} , hence on the whole $\widehat{E^{\mathrm{rad}}} = \widehat{E'^{\mathrm{rad}}}$, and therefore σ_i must be the identity map, so d = 1.

4. (φ, Γ) -MODULES

We assume here for simplicity $K = K_0$, and denote $E := E_0$ (see in the book, for the general case).

Let V be a \mathbb{Z}_p (*p*-adic) representation of G_K . Since $H_K := \operatorname{Gal}(\overline{K}/K^{\operatorname{cyc}})$ is isomorphic to a Galois group $G_E := \operatorname{Gal}(E_0^{\mathrm{s}}/E)$ in characteristic p, the restricted action of G_K to H_K on V gives rise to a \mathbb{Z}_p (*p*-adic) representation $V \mid_{H_K}$ of G_E . We know already from the representation theory of Galois groups of characteristic *p*-fields, that $V \mid_{H_K}$ corresponds to an étale φ -module over the Cohen ring $\mathcal{O}_{\mathcal{E}}$ of E given by

$$(\mathcal{O}_{\widehat{\mathcal{E}^{\mathrm{unr}}}} \otimes_{\mathbb{Z}_p} V)^{H_K} \in \mathcal{M}_{\varphi}^{\mathrm{\acute{e}t}}(\mathcal{O}_{\mathcal{E}}).$$

From the exact sequence

(2)
$$1 \xrightarrow{\chi} H_K \xrightarrow{\chi} G_K \xrightarrow{\chi} \Gamma_K \longrightarrow 1$$
$$\cong \uparrow$$
$$\operatorname{Gal}(\overline{E_0}/E) =: G_E$$

we obtain an action of Γ_K on $(\mathcal{O}_{\widehat{\mathcal{E}^{unr}}} \otimes_{\mathbb{Z}_p} V)^{H_K}$ via the cyclotomic character χ .

Set $B := \operatorname{Frac}(W(\mathcal{C})) = W(\mathcal{C})[1/p] \supset \mathcal{E} := \operatorname{Frac}(\mathcal{O}_{\mathcal{E}})$. Denote by $[\cdot]$ the Teichmüller lift corresponding to the Cohen ring $\mathcal{O}_{\mathcal{E}}$, then $[\epsilon], \pi_{\epsilon} := [\epsilon] - 1 \in \mathcal{O}_{\mathcal{E}}$. We can now give an explicit description of a Cohen ring of E

$$\mathcal{O}_{\mathcal{E}} := \{ \sum_{n=-\infty}^{+\infty} \lambda_n \pi_{\epsilon}^n \mid \lambda_n \in W(k), \ \lambda_n \xrightarrow{n \to -\infty} 0 \} = \widehat{W(k)((\pi_{\epsilon}))};$$

since one easily checks that this is a complete ring, whose maximal ideal is generated by p, and with residue field E.

The action of Frobenius on $[\epsilon] = (\epsilon, 0, 0, ...)$ is simply $\varphi([\epsilon]) = (\epsilon^p, 0, 0, ...)$, and $g([\epsilon]) = (\epsilon^{\chi(g)}, 0, 0, ...)$. These actions are commuting and semi-linear on $(\mathcal{O}_{\widehat{\mathcal{E}unr}} \otimes_{\mathbb{Z}_p} V)^{H_K}$. This motivates the following

Definition 4.1. An étale (φ, Γ) -module over $\mathcal{O}_{\mathcal{E}}$ is an étale φ -module over $\mathcal{O}_{\mathcal{E}}$ with a continuous semi-linear action of Γ_K which commutes with φ . The category of such modules will be denoted by $\mathcal{M}_{\varphi,\Gamma}^{\acute{e}t}(\mathcal{O}_{\mathcal{E}})$.

Remark 4.2. Similarly, one defines étale (φ, Γ) -modules for $\mathcal{E} := \operatorname{Frac}(\mathcal{O}_{\mathcal{E}})$.

For any \mathbb{Z}_p -representation V of G_K , i.e. $V \in \operatorname{Rep}_{\mathbb{Z}_p}(G_K)$, we write

$$\mathbb{D}(V) := (\mathcal{O}_{\widehat{\mathcal{E}^{\mathrm{unr}}}} \otimes_{\mathbb{Z}_p} V)^{H_k} \in \mathcal{M}_{\varphi,\Gamma}^{\mathrm{\acute{e}t}}(\mathcal{O}_{\mathcal{E}});$$

and for any $D \in \mathcal{M}_{\varphi,\Gamma}^{\text{\'et}}(\mathcal{O}_{\mathcal{E}})$

$$\mathbb{V}(D) := (\mathcal{O}_{\widehat{\mathcal{E}^{\mathrm{unr}}}} \otimes_{\mathcal{O}_{\mathcal{E}}} D)_{\varphi=1} \in \operatorname{Rep}_{\mathbb{Z}_n}(G_K).$$

Theorem 4.3. The functors \mathbb{D} and \mathbb{V} are equivalences of (Tannakian) categories.

Proof. Since the actions of φ and Γ_K commute, the equivalence of categories between $\operatorname{Rep}_{\mathbb{Z}_p}(H_K) = \operatorname{Rep}_{\mathbb{Z}_p}(G_E)$ and $\mathcal{M}_{\varphi}^{\text{ét}}(\mathcal{O}_{\mathcal{E}})$, which was proven in the last lecture, gives us the statement, by simply using the exact sequence (2).

- **Remark 4.4.** (1) There is also a corresponding statement of the Theorem above for p-adic representations and étale (φ, Γ) -modules over \mathcal{E} (where in the definition of the functors we have to tensorize over \mathbb{Q}_p , and over \mathcal{E} respectively; cf. last lecture).
 - (2) An étale (φ, Γ) -module D over \mathcal{E} can be explicitly given in the following way. Fix a topological generator γ_0 of Γ_K , and fix also a basis of D (which is of dimension $d < \infty$ by the étale assumption). Then, the action of γ_0 and the action of φ give rise to two matrices $M_{\gamma_0}, M_{\varphi} \in \operatorname{GL}_d(\mathcal{E})$. The fact that these two semi-linear action commute, is expressed through the following equation

(3)
$$M_{\gamma_0}\gamma_0(M_{\varphi}) = M_{\varphi}\varphi(M_{\gamma_0}).$$

Therefore, an étale (φ, Γ) -module over \mathcal{E} of rank d is nothing else than two matrices of $\operatorname{GL}_d(\mathcal{E})$, which satisfy the relation (3) above.