B-representations and regular G-rings Talk in the Forschungsseminar on p-adic Galois Representations Wintersemester 2008/09

Ralf Butenuth

2008 - 10 - 23

Contents

Contents		1
1	B-representations	1
2	Regular (F, G) -rings	3
3	Potentially semi-stable <i>l</i> -adic representations	6
Re	References	

1 *B*-representations

Let G be a topological group and B a topological commutative ring with continous G-action, i.e. for all $g \in G, b_1, b_2 \in B$ we have $g(b_1 + b_2) = g(b_1) + g(b_2)$ and $g(b_1 * b_2) = g(b_1) * g(b_2)$.

Example 1.1 $B = L \supset K$ a Galois extention of fields, G = Gal(L/K).

Definition 1.2 A B-representation X of G is a B-modul of finite type X equipped with a semi-linear continuus G-action. Semi-linear means that for all $g \in G, b \in B, x, x_1, x_2 \in$ X we have $g(x_1 + x_2) = g(x_1) + g(x_2)$ and g(bx) = g(b)g(x).

If $B = \mathbb{F}_p$, we call it a mod-*p*-representation. If $B = \mathbb{Q}_p$, we call it a *p*-adic representation. If *G* acts trivial on *B*, we call it a linear representation.

Definition 1.3 A B-representation X of G is called free if the underlying B-modul X is free.

Definition 1.4 A free B-representation X of G is called trivial if one of the equivalent conditions hold:

(a) There is a Basis of X over B in X^G .

1 B-REPRESENTATIONS

(b) $X \cong B^d$ as G-modules with the natural G-action on B^d .

Let us look at three key examples:

Example 1.5 If $F \subseteq B^G$ is a subfield, and V an F-representation of G and let G act on $X := B \otimes_F V$ as $g(b \otimes x) = g(b) \otimes g(x)$. Then X is a free B-representation (free, since V was just a vector space over F).

Example 1.6 Let $\mathbb{Z}_p(1) = T_p(\mathbb{G}_m/\mathbb{Q}_p) = \lim_{\longleftarrow} \mu_{p^n}(\overline{\mathbb{Q}}_p)$ be the *p*-adic Tate-module of the multiplicative group and $\mathbb{Q}_p(1) = \mathbb{Z}_p(1) \bigotimes_{\mathbb{Z}_p} \mathbb{Q}_p$. Set $\mathbb{Q}_p(-1) = \operatorname{Hom}_{G_{\mathbb{Q}_p}}(\mathbb{Q}_p(1), \mathbb{Q}_p)$ where $G_{\mathbb{Q}_p}$ denotes the absolute Galois group of \mathbb{Q}_p and define $\mathbb{Q}_p(i) = \mathbb{Q}_p(1)^{\otimes i}$ for all $i \in \mathbb{Z}$. Then the $\mathbb{Q}_p(i)$ are $G_{\mathbb{Q}_p}$ -modules. It is a result of Tate that with $B := \widehat{\mathbb{Q}_p} = :C_p =:C$ the obtained *B*-representations $\mathbb{Q}_p(i) \otimes_{\mathbb{Q}_p} B$ are trivial if and only if i = 0. In later talks of the seminar we will construct a ring B_{dR} such that $\mathbb{Q}_p(i) \otimes_{\mathbb{Q}_p} B_{\mathrm{dR}}$ is trivial for all i.

Example 1.7 Let E/\mathbb{Q}_p be an elliptic curve and set $V_p = T_p(E/\mathbb{Q}_p) \otimes \mathbb{Q}_p$. Then $V_p \otimes_{\mathbb{Q}_p} B_{dR}$ is trivial. In yet later talks we will construct a subring B_{cris} of B_{dR} such that $V_p \otimes_{\mathbb{Q}_p} B_{cris}$ is trivial if E has good reduction.

Our first goal is an interpretation of equivalence classes of free *B*-representations of *G* of rank *d* as cohomology classes in $H^1_{\text{cont}}(G, \operatorname{GL}_d(B))$, where two free *B*-representations are equivalent if they only differ by a change of basis.

Before we give the proposition we recall some facts about group cohomology: Let M be any (multiplicatively written) topological G-group. Then $H^0_{\text{cont}}(G, M) = M^G$ and $H^1_{\text{cont}}(G, M) = Z^1(G, M) / \sim$ where $Z^1(G, M) = \{f : G \to M \text{ continous } | f(g_1 * g_2) = f(g_1) * (g_1 f(g_2))\}$ and $f_1 \sim f_2$ if there is an $a \in M$ such that $f_1(g) = a^{-1}f_2(g)a(g)$ for all $g \in G$.

Thus $H^1_{\text{cont}}(G, M)$ is a pointet set with the distinguished point being the class of the cocycle $f(g) \equiv 1$.

We recall the famous theorem Hilbert 90:

Proposition 1.8 Let L/K be a Galois extention of fields. Then

- (a) $H^1(\text{Gal}(L/K), L) = 0$
- (b) $H^1(\text{Gal}(L/K), L^*) = 1$
- (c) $H^1(\operatorname{Gal}(L/K), \operatorname{GL}_d(L)) = 1$

Now we can formulate the proposition:

Proposition 1.9 There is a natural bijection between equivalence classes of free *B*-representations of *G* of rank *d* and $H^1_{\text{cont}}(G, \text{GL}_d(B))$, denoted by $X \mapsto [X]$. Moreover *X* is trivial if and only if [X] is the distinguished point of $H^1_{\text{cont}}(G, \text{GL}_d(B))$.

Remark 1.10 The proposition and Hilbert 90 imply that for L/K a Galois extention any *L*-representation of Gal(L/K) is trivial.

PROOF: Let X be a free B-representation of G of rank d and $\{e_1, \ldots, e_d\}$ a basis of X/B. Write $g(e_1, \ldots, e_d) = (e_1, \ldots, e_d)A(g)$. Then we get a map $\alpha : G \to \operatorname{Mat}_d(B), g \mapsto A(g)$. We have to check the following for claims:

- (a) $\alpha \in Z^1_{\operatorname{cont}}(G, \operatorname{Mat}_d(B))$
- (b) $A(g) \in \operatorname{GL}_d(B)$ for all $g \in G$
- (c) If $\{e'_1, \ldots, e'_d\}$ is another basis of X/B and P is the basechange matrix, define A'(g) as above, then $A'(g) = P^{-1}A(g)g(P)$.
- (d) Given $\alpha \in Z^1_{\text{cont}}(G, \operatorname{GL}_d(B))$ there is a unique semi-linear action of G on $X = B^d$ such that $[X] = \overline{\alpha}$.

These claims are all easy to check.

2 Regular (F, G)-rings

Assume now $E := B^G$ is a field and let F be a closed subfield of E. Denote by $\operatorname{Rep}_F(G)$ the category of F-representations of G. If B is a domain, then the G-action on B extends to $C := \operatorname{Frac}(B)$ as $g(\frac{b_1}{b_2}) := \frac{g(b_1)}{g(b_2)}$.

Definition 2.1 B is (F,G)-regular, if

- (a) B is a domain.
- (b) $B^G = C^G$.
- (c) If $b \neq 0$ and $Gb \subseteq Fb$ we have $b \in B^*$.

As Hélène explained, $\operatorname{\mathbf{Rep}}_F(G)$ is a neutral Tannakian category.

Definition 2.2 A sub-Tannakin category of $\operatorname{Rep}_F(G)$ is a strictly full subcategory C wich is closed under direct sums, tensor products and duals and contains the unit representation.

Definition 2.3 An *F*-representation *V* of *G* is called *B*-admissible, if $B \otimes_F V$ is trivial. Let $\operatorname{Rep}_F^B(G)$ denote the full subcategory of *B*-admissible *F*-representations of *G*.

We define a functor $\operatorname{\mathbf{Rep}}_F(G) \to \operatorname{Vec}_E : V \mapsto D_B(V) := (B \otimes_F V)^G$ and for each V a map $\alpha_V : B \otimes_E D_B(B) \to B \otimes_F V : \lambda \otimes x \mapsto \lambda x$ for $\lambda \in B, x \in D_B(V)$. α_V is a B-linear G-equivariant map, where G acts on $B \otimes_E D_B(V)$ as $g(\lambda \otimes x) = g(\lambda) \otimes x$.

This functor maps objects, wich are hard to understand (*F*-representations of *G*) to objects, wich are easy to understand (vector spaces over the field *E*). The next theorem is the main theorem of my talk, wich showes some properties of this functor, once we have assume *B* to be (F, G)-regular.

Theorem 2.4 Assume B to be (F,G)-regular. Then

- (1) For all $V \in \operatorname{\mathbf{Rep}}_F(G)$ we have α_V is injective and $\dim_E D_B(V) \leq \dim_F(V)$. Moreover $\dim_E D_B(V) = \dim_F(V)$ iff α_V is an isomorphism iff V is B-admissible.
- (2) $\operatorname{\mathbf{Rep}}_{F}^{B}(G)$ is a sub-Tannakian category and D_{B} restricted to $\operatorname{\mathbf{Rep}}_{F}^{B}(G)$ is an exact and faithfull tensor functor.

For the second part, we have to show:

- (a) D_B preserves exact sequences.
- (b) $V \neq 0$ implies $D_B(V) \neq 0$ (this is clear)
- (c) If V is admissible, then subs and quotiens of V are also admissible.
- (d) $D_B(F) \cong E$ (this is clear)
- (e) If V_1, V_2 are admissible, then $V_1 \otimes V_2$ is admissible and $D_B(V_1) \otimes D_B(V_2) \cong D_B(V_1 \otimes V_2)$.
- (f) If V is admissible, then V^* is admissible and $D_B(V^*) \cong (D_B(V))^*$.

PROOF: (1) First we proof that α_V is injective: Let C = Frac(B). Since B is (F, G)-regular, we have $C^G = B^G = E$. So we have the commutative diagram:

and hence for the injectivity we can restrict to the case B = C a field. What we have to show is that given $h \ge 1, x_1, \ldots, x_h \in D_B(V)$ linear independent over E they remain linear independet over B. We use induction. For h = 1 there is nothing to show. So let $h \ge 2$ and assume

$$\sum_{i=1}^{n} \lambda_i x_i = 0, \lambda_i \in B.$$

Since B is a field, we can assume $\lambda_h = -1$, so

$$x_h = \sum_{i=1}^{h-1} \lambda_i x_i.$$

But since all x_i are G-invariant, we have for all $g \in G$:

$$\sum_{i=1}^{h-1} \lambda_i x_i = x_h = g(x_h) = g(\sum_{i=1}^{h-1} \lambda_i x_i) = \sum_{i=1}^{h-1} g(\lambda_i) x_i.$$

So by induction we have $\lambda_i = g(\lambda_i)$ for all $g \in G$ hence $\lambda_i \in B^G = E$, which is a contradiction. Therefore α_V is injective.

For the second assertion of (1): If α_V is an isomorphism, then $\dim_E D_B(V) = \dim_F V = \operatorname{rank}_B B \otimes_F V$. Conversely, if $\dim_E D_B(B) = \dim_F(V)$, we choose bases $\{v_1, \ldots, v_d\}$ of V/F and $\{e_1, \ldots, e_d\}$ of $D_B(V)/E$ and write

$$e_j = \sum_{i=1}^a b_{ij} v_i.$$

The matrix (b_{ij}) is called period matrix, since α_V is injective, we have $b = \det((b_{ij})) \neq 0$. We have to show that b is in B^* . Let $\det V = \bigwedge_F^d V = Fv$ with $v = v_1 \wedge \cdots \wedge v_d$ and $g(v) = \eta(g)v$ with $\eta: G \to F^*$ a character. For $e = e_1 \land \dots \land e_d \in \bigwedge_E^d D_B(V)$ we have e = bv.

But also for all $g \in G$: $bv = e = g(e) = g(bv) = g(b)\eta(g)v$. Therefore $g(b) = \eta(g)^{-1}b$ for all $g \in G$. Since B is (F, G)-regular, we have $b \in B^*$.

For the second equivalence: V is B-admissible is by definition equivalent to the existence of a B-basis $\{x_1, \ldots, x_d\}$ od $B \otimes_F V$ such that $x_i \in D_B(V)$, therefore this is equivalent to α_V being surjective. Since α_V is always injective, this is equivalent to α_V being an isomorphism.

(2) Let V be admissible and V' a sub-representation. Then we obtain an exact sequence of F-vector spaces:

$$0 \to V' \to V \to V'' := V/V' \to 0$$

tensoring with B gives the exact sequence:

$$0 \to B \otimes_F V' \to B \otimes_F V \to B \otimes_F V'' \to 0$$

and since taking G-invariance is an left-exact functor, we obtain:

$$0 \to D_B(V') \to D_B(V) \to D_B(V'')$$

and we have to show, that the map from $D_B(V)$ to $D_B(V'')$ is also surjective. Let $d = \dim_F V, d' = \dim_F V', d'' = \dim_F V''$. Then from (1) we have, since V is admissible $\dim_E D_B(V) = d$ and $\dim_E D_B(V') \leq d'$ and $\dim_E D_B(V'') \leq d''$ but since d = d' + d'', this implies that the map from $D_B(V)$ to $D_B(V'')$ is also surjective. Hence we proved (a) and (c).

For (d) we have the commutative diagramm:

 σ is induced by Σ and is therefore clearly injective. But since V_1 and V_2 are admissible, we have $\dim_E(D_B(V_1) \otimes_E D_B(V_2)) = \dim_B(B \otimes_F (V_1 \otimes_F V_2)) \ge \dim_E D_B(V_1 \otimes_F V_2)$, hence σ is an isomorphism.

For (e) we have to show that if V is admissible, so is V^* . The case $\dim_F V = 1$ is easy: If V = Fv, then $D_B(V) = E(b \otimes v)$, $V^* = Fv^*$, $D_B(V^*) = E(b^{-1} \otimes v^*)$. If $\dim_F V \ge 1$: We observed in the proof of (1) that $\det(\alpha_{V^*}) = \alpha_{\det V^*}$. Hence V admissible $\Rightarrow \det V$ admissible $\Rightarrow \det V^*$ admissible $\Rightarrow V^*$ admissible.

Finally we have to proof $D_B(V^*) \cong D_B(V)^*$. We have a commutative diagramm:

Let $f \in D_B(V^*), t \in B \otimes_F V, g \in G$. Then $f(t) = g \circ f(t) = g(f(g^{-1}(t)))$. If we assume $t \in D_B(V)$, then g(f(t)) = f(t), hence $f(t) \in E$. Therefor we get the induced homomorphism τ . From the diagramm τ is clearly injective. But since the dimensions of $D_B(V)$ and $D_B(V^*)$ are equal, τ is an isomorphism.

3 Potentially semi-stable *l*-adic representations

We try now to give an alternative description of potentially semi-stable l-adic representations. This part is quite sketchy.

For E/\mathbb{C} an elliptic curve, you can find a $q \in \mathbb{C}^*$ with |q| < 1 such that $E(\mathbb{C}) \cong \mathbb{C}^*/q^{\mathbb{Z}}$. For K a local field with residue characteristic p > 0 and E/K an elliptic curve with multiplicative reduction, a result of Tate shows that $E(K^{\text{sep}}) \cong (K^{\text{sep}})^*/q^{\mathbb{Z}}$ for some $q \in \mathfrak{m}_K$ the maximal ideal of O_K . Hence $E_{l^n-\text{tors}}(K^{\text{sep}}) = \langle \zeta_{l^n}, q^{\frac{1}{l^n}} \rangle$ where $G_K =$ $\operatorname{Gal}(K^{\text{sep}}/K)$ acts on ζ_{l^n} via a cyclotomic character χ_{cycl} and on $q^{\frac{1}{l^n}}$ as $\sigma(q^{\frac{1}{l^n}}) = q^{\frac{1}{l^n}}\zeta_{l^n}^{i_\sigma}$.

Therefore G_K acts on $T_l(E)$ via $\begin{pmatrix} \chi_{\text{cycl}} & \star \\ 0 & 1 \end{pmatrix}$. Set $V := T_l(E)(-1) \otimes_{\mathbb{Z}_l} \mathbb{Q}_l$. We have $0 \to \mathbb{Q}_l \to V \to \mathbb{Q}_l(-1) \to 1$

and G_K acts on V via $\begin{pmatrix} 1 & \star \\ 0 & \chi_{\text{cycl}}^{-1} \end{pmatrix}$. Write $\mathbb{Q}_l(-1) = \mathbb{Q}_l t^{-1}$ and let $u \in V$ be any lift of t^{-1} and define $B_l := \mathbb{Q}_l[u]$ where we let G_K act on $1, u, u^2, \ldots$ via

$$\begin{pmatrix} 1 & \star & \star & \star & \dots \\ 0 & \chi_{\text{cycl}}^{-1} & \star & \star & \dots \\ 0 & 0 & \chi_{\text{cycl}}^{-2} & \star & \dots \\ 0 & 0 & 0 & \chi_{\text{cycl}}^{-3} & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

and we have a map $N: B_l \to B_l(-1) := B_l \otimes \mathbb{Q}_l(-1) : g(u) \mapsto g'(u) \otimes t^{-1}$. Our aim is the description of potentially semi-stable l-adic representation. We want to give a functor

$$\operatorname{\mathbf{Rep}}_{\mathbb{O}_l}(G_K) \to \operatorname{\mathbf{Rep}}_K(WD)$$

where $\operatorname{\mathbf{Rep}}_{K}(WD)$ is the category of Weil-Deligne-Representations. The objects of $\operatorname{\mathbf{Rep}}_{K}(WD)$ are pairs (D, N) where D is a \mathbb{Q}_{l} -vectorspace with action of G_{K} such that I_{K} acts trivial after a finite extention and $N: D \to D(-1)$ is a nilpotent endomorphism. The morphisms of $\operatorname{\mathbf{Rep}}_{K}(WD)$ between (D, N) and (D', N') are \mathbb{Q}_{l} -linear endomorphisms $\eta: D \to D'$, who commute with G_{K} and such that the diagramm

commutes.

Theorem 3.1 The map

$$V \mapsto \lim_{\leftarrow H \subseteq I_K open} (B_l \otimes_{\mathbb{Q}_l} V)^H$$

 $defines \ an \ equivalence \ of \ categories$

$$\operatorname{\mathbf{Rep}}_{\mathbb{O}_l}^{p.st.}(G_K) \to \operatorname{\mathbf{Rep}}_K(WD)$$

between the category of potentially semi-stable \mathbb{Q}_l -representations of G_K and the category of Weil-Deligne-representations over K with quasi-inverse

$$(D,N) \mapsto V_l(D,N) := \operatorname{Kern}(N: B_l \otimes_{\mathbb{Q}_l} D \to (B_l \otimes_{\mathbb{Q}_l} D)(-1)).$$

One main ingredients of the proof is the observation that B_l is (\mathbb{Q}_l, H) -regular and the Theorem 2.4.

References

[FO] **Jean-Marc Fontaine, Yi Ouyang** Theory of *p*-adic Galois representations, *Preprint*