B-representations and regular G-rings Talk in the Forschungsseminar on p-adic Galois
 Representations

 Wintersemester 2008/09Ralf Butenuth
2008-10-23

Contents

Contents 1
$1 B$-representations 1
2 Regular (F, G)-rings 3
3 Potentially semi-stable l-adic representations 6
References 7

$1 B$-representations

Let G be a topological group and B a topological commutative ring with continous G-action, i.e. for all $g \in G, b_{1}, b_{2} \in B$ we have $g\left(b_{1}+b_{2}\right)=g\left(b_{1}\right)+g\left(b_{2}\right)$ and $g\left(b_{1} * b_{2}\right)=$ $g\left(b_{1}\right) * g\left(b_{2}\right)$.

Example 1.1 $B=L \supset K$ a Galois extention of fields, $G=\operatorname{Gal}(L / K)$.
Definition 1.2 $A B$-representation X of G is a B-modul of finite type X equipped with a semi-linear continous G-action. Semi-linear means that for all $g \in G, b \in B, x, x_{1}, x_{2} \in$ X we have $g\left(x_{1}+x_{2}\right)=g\left(x_{1}\right)+g\left(x_{2}\right)$ and $g(b x)=g(b) g(x)$.

If $B=\mathbb{F}_{p}$, we call it a mod- p-representation.
If $B=\mathbb{Q}_{p}$, we call it a p-adic representation.
If G acts trivial on B, we call it a linear representation.
Definition 1.3 $A B$-representation X of G is called free if the underlying B-modul X is free.

Definition 1.4 A free B-representation X of G is called trivial if one of the equivalent conditions hold:
(a) There is a Basis of X over B in X^{G}.
(b) $X \cong B^{d}$ as G-modules with the natural G-action on B^{d}.

Let us look at three key examples:
Example 1.5 If $F \subseteq B^{G}$ is a subfield, and V an F-representation of G and let G act on $X:=B \otimes_{F} V$ as $g(b \otimes x)=g(b) \otimes g(x)$. Then X is a free B-representation (free, since V was just a vector space over $F)$.

Example 1.6 Let $\mathbb{Z}_{p}(1)=T_{p}\left(\mathbb{G}_{m} / \mathbb{Q}_{p}\right)=\lim _{\longleftarrow} \mu_{p^{n}}\left(\overline{\mathbb{Q}}_{p}\right)$ be the p-adic Tate-module of the multiplicative group and $\mathbb{Q}_{p}(1)=\mathbb{Z}_{p}(1) \otimes_{\mathbb{Z}_{p}} \mathbb{Q}_{p}$. Set $\mathbb{Q}_{p}(-1)=\operatorname{Hom}_{G_{\mathbb{Q}_{p}}}\left(\mathbb{Q}_{p}(1), \mathbb{Q}_{p}\right)$ where $G_{\mathbb{Q}_{p}}$ denotes the absolute Galois group of \mathbb{Q}_{p} and define $\mathbb{Q}_{p}(i)=\mathbb{Q}_{p}(1)^{\otimes i}$ for all $i \in \mathbb{Z}$. Then the $\mathbb{Q}_{p}(i)$ are $G_{\mathbb{Q}_{p}}$-modules. It is a result of Tate that with $B:=\hat{\mathbb{Q}}_{p}=$: $C_{p}=: C$ the obtained B-representations $\mathbb{Q}_{p}(i) \otimes_{\mathbb{Q}_{p}} B$ are trivial if and only if $i=0$. In later talks of the seminar we will construct a ring B_{dR} such that $\mathbb{Q}_{p}(i) \otimes_{\mathbb{Q}_{p}} B_{\mathrm{dR}}$ is trivial for all i.

Example 1.7 Let E / \mathbb{Q}_{p} be an elliptic curve and set $V_{p}=T_{p}\left(E / \mathbb{Q}_{p}\right) \otimes \mathbb{Q}_{p}$. Then $V_{p} \otimes_{\mathbb{Q}_{p}} B_{\mathrm{dR}}$ is trivial. In yet later talks we will construct a subring $B_{\text {cris }}$ of B_{dR} such that $V_{p} \otimes_{\mathbb{Q}_{p}} B_{\text {cris }}$ is trivial if E has good reduction.

Our first goal is an interpretation of equivalence classes of free B-representations of G of rank d as cohomology classes in $H_{\text {cont }}^{1}\left(G, \mathrm{GL}_{d}(B)\right)$, where two free B-representations are equivalent if they only differ by a change of basis.
Before we give the proposition we recall some facts about group cohomology: Let M be any (multiplicativly written) topological G-group. Then $H_{\mathrm{cont}}^{0}(G, M)=M^{G}$ and $H_{\text {cont }}^{1}(G, M)=Z^{1}(G, M) / \sim$ where $Z^{1}(G, M)=\left\{f: G \rightarrow M\right.$ continous $\mid f\left(g_{1} * g_{2}\right)=$ $\left.f\left(g_{1}\right) *\left(g_{1} f\left(g_{2}\right)\right)\right\}$ and $f_{1} \sim f_{2}$ if there is an $a \in M$ such that $f_{1}(g)=a^{-1} f_{2}(g) a(g)$ for all $g \in G$.
Thus $H_{\text {cont }}^{1}(G, M)$ is a pointet set with the distinguished point being the class of the cocylce $f(g) \equiv 1$.
We recall the famous theorem Hilbert 90:

Proposition 1.8 Let L / K be a Galois extention of fields. Then
(a) $H^{1}(\operatorname{Gal}(L / K), L)=0$
(b) $H^{1}\left(\operatorname{Gal}(L / K), L^{\star}\right)=1$
(c) $H^{1}\left(\operatorname{Gal}(L / K), \mathrm{GL}_{d}(L)\right)=1$

Now we can formulate the proposition:
Proposition 1.9 There is a natural bijection between equivalence classes of free B representations of G of rank d and $H_{\mathrm{cont}}^{1}\left(G, \mathrm{GL}_{d}(B)\right)$, denoted by $X \mapsto[X]$. Moreover X is trivial if and only if $[X]$ is the distinguished point of $H_{\mathrm{cont}}^{1}\left(G, G L_{d}(B)\right)$.

Remark 1.10 The proposition and Hilbert 90 imply that for L / K a Galois extention any L-representation of $\operatorname{Gal}(L / K)$ is trivial.

Proof: Let X be a free B-representation of G of rank d and $\left\{e_{1}, \ldots, e_{d}\right\}$ a basis of X / B. Write $g\left(e_{1}, \ldots, e_{d}\right)=\left(e, \ldots e_{d}\right) A(g)$. Then we get a map $\alpha: G \rightarrow \operatorname{Mat}_{d}(B), g \mapsto A(g)$. We have to check the following for claims:
(a) $\alpha \in Z_{\text {cont }}^{1}\left(G, \operatorname{Mat}_{d}(B)\right)$
(b) $A(g) \in \mathrm{GL}_{d}(B)$ for all $g \in G$
(c) If $\left\{e_{1}^{\prime}, \ldots, e_{d}^{\prime}\right\}$ is another basis of X / B and P is the basechange matrix, define $A^{\prime}(g)$ as above, then $A^{\prime}(g)=P^{-1} A(g) g(P)$.
(d) Given $\alpha \in Z_{\text {cont }}^{1}\left(G, \mathrm{GL}_{d}(B)\right)$ there is a unique semi-linear action of G on $X=B^{d}$ such that $[X]=\bar{\alpha}$.

These claims are all easy to check.

2 Regular (F, G)-rings

Assume now $E:=B^{G}$ is a field and let F be a closed subfield of E. Denote by $\operatorname{Rep}_{F}(G)$ the category of F-representations of G. If B is a domain, then the G-action on B extends to $C:=\operatorname{Frac}(B)$ as $g\left(\frac{b_{1}}{b_{2}}\right):=\frac{g\left(b_{1}\right)}{g\left(b_{2}\right)}$.

Definition 2.1 B is (F, G)-regular, if
(a) B is a domain.
(b) $B^{G}=C^{G}$.
(c) If $b \neq 0$ and $G b \subseteq F b$ we have $b \in B^{\star}$.

As Hélène explained, $\operatorname{Rep}_{F}(G)$ is a neutral Tannakian category.
Definition 2.2 A sub-Tannakin category of $\operatorname{Rep}_{F}(G)$ is a strictly full subcategory \mathcal{C} wich is closed under direct sums, tensor products and duals and contains the unit representation.

Definition 2.3 An F-representation V of G is called B-admissible, if $B \otimes_{F} V$ is trivial. Let $\boldsymbol{R e p}_{F}^{B}(G)$ denote the full subcategory of B-admissible F-representations of G.

We define a functor $\operatorname{Rep}_{F}(G) \rightarrow \operatorname{Vec}_{E}: V \mapsto D_{B}(V):=\left(B \otimes_{F} V\right)^{G}$ and for each V a $\operatorname{map} \alpha_{V}: B \otimes_{E} D_{B}(B) \rightarrow B \otimes_{F} V: \lambda \otimes x \mapsto \lambda x$ for $\lambda \in B, x \in D_{B}(V)$. α_{V} is a B-linear G-equivariant map, where G acts on $B \otimes_{E} D_{B}(V)$ as $g(\lambda \otimes x)=g(\lambda) \otimes x$.
This functor maps objects, wich are hard to understand (F-representations of G) to objects, wich are easy to understand (vector spaces over the field E). The next theorem is the main theorem of my talk, wich showes some properties of this functor, once we have assume B to be (F, G)-regular.

Theorem 2.4 Assume B to be (F, G)-regular. Then
(1) For all $V \in \operatorname{Rep}_{F}(G)$ we have α_{V} is injective and $\operatorname{dim}_{E} D_{B}(V) \leqslant \operatorname{dim}_{F}(V)$. Moreover $\operatorname{dim}_{E} D_{B}(V)=\operatorname{dim}_{F}(V)$ iff α_{V} is an isomorphism iff V is B-admissible.
(2) $\operatorname{Rep}_{F}^{B}(G)$ is a sub-Tannakian category and D_{B} restricted to $\boldsymbol{\operatorname { R e p }}_{F}^{B}(G)$ is an exact and faithfull tensor functor.

For the second part, we have to show:
(a) D_{B} preserves exact sequences.
(b) $V \neq 0$ implies $D_{B}(V) \neq 0$ (this is clear)
(c) If V is admissible, then subs and quotiens of V are also admissible.
(d) $D_{B}(F) \cong E$ (this is clear)
(e) If V_{1}, V_{2} are admissible, then $V_{1} \otimes V_{2}$ is admissible and $D_{B}\left(V_{1}\right) \otimes D_{B}\left(V_{2}\right) \cong D_{B}\left(V_{1} \otimes V_{2}\right)$.
(f) If V is admissible, then V^{\star} is admissible and $D_{B}\left(V^{\star}\right) \cong\left(D_{B}(V)\right)^{\star}$.

Proof: (1) First we proof that α_{V} is injective: Let $C=\operatorname{Frac}(B)$. Since B is (F, G) regular, we have $C^{G}=B^{G}=E$. So we have the commutative diagram:

and hence for the injectivity we can restrict to the case $B=C$ a field. What we have to show is that given $h \geqslant 1, x_{1}, \ldots, x_{h} \in D_{B}(V)$ linear independent over E they remain linear independet over B. We use induction. For $h=1$ there is nothing to show. So let $h \geqslant 2$ and assume

$$
\sum_{i=1}^{h} \lambda_{i} x_{i}=0, \lambda_{i} \in B .
$$

Since B is a field, we can assume $\lambda_{h}=-1$, so

$$
x_{h}=\sum_{i=1}^{h-1} \lambda_{i} x_{i} .
$$

But since all x_{i} are G-invariant, we have for all $g \in G$:

$$
\sum_{i=1}^{h-1} \lambda_{i} x_{i}=x_{h}=g\left(x_{h}\right)=g\left(\sum_{i=1}^{h-1} \lambda_{i} x_{i}\right)=\sum_{i=1}^{h-1} g\left(\lambda_{i}\right) x_{i} .
$$

So by induction we have $\lambda_{i}=g\left(\lambda_{i}\right)$ for all $g \in G$ hence $\lambda_{i} \in B^{G}=E$, wich is a contradiction. Therefore α_{V} is injective.

For the second assertion of (1): If α_{V} is an isomorphism, then $\operatorname{dim}_{E} D_{B}(V)=\operatorname{dim}_{F} V=$ $\operatorname{rank}_{B} B \otimes_{F} V$. Conversly, if $\operatorname{dim}_{E} D_{B}(B)=\operatorname{dim}_{F}(V)$, we choose bases $\left\{v_{1}, \ldots, v_{d}\right\}$ of V / F and $\left\{e_{1}, \ldots, e_{d}\right\}$ of $D_{B}(V) / E$ and write

$$
e_{j}=\sum_{i=1}^{d} b_{i j} v_{i} .
$$

The matrix $\left(b_{i j}\right)$ is called period matrix, since α_{V} is injective, we have $b=\operatorname{det}\left(\left(b_{i j}\right)\right) \neq 0$. We have to show that b is in B^{\star}. Let $\operatorname{det} V=\bigwedge_{F}^{d} V=F v$ with $v=v_{1} \wedge \cdots \wedge v_{d}$ and
$g(v)=\eta(g) v$ with $\eta: G \rightarrow F^{\star}$ a character. For $e=e_{1} \wedge \cdots \wedge e_{d} \in \bigwedge_{E}^{d} D_{B}(V)$ we have $e=b v$.
But also for all $g \in G: b v=e=g(e)=g(b v)=g(b) \eta(g) v$. Therefore $g(b)=\eta(g)^{-1} b$ for all $g \in G$. Since B is (F, G)-regular, we have $b \in B^{\star}$.
For the second equivalence: V is B-admissible is by definition equivalent to the existence of a B-basis $\left\{x_{1}, \ldots, x_{d}\right\}$ od $B \otimes_{F} V$ such that $x_{i} \in D_{B}(V)$, therefore this is equivalent to α_{V} being surjective. Since α_{V} is always injective, this is equivalent to α_{V} being an isomorphism.
(2) Let V be admissible and V^{\prime} a sub-representation. Then we obtain an exact sequence of F-vectorspaces:

$$
0 \rightarrow V^{\prime} \rightarrow V \rightarrow V^{\prime \prime}:=V / V^{\prime} \rightarrow 0
$$

tensoring with B gives the exact sequence:

$$
0 \rightarrow B \otimes_{F} V^{\prime} \rightarrow B \otimes_{F} V \rightarrow B \otimes_{F} V^{\prime \prime} \rightarrow 0
$$

and since taking G-invariance is an left-exact functor, we obtain:

$$
0 \rightarrow D_{B}\left(V^{\prime}\right) \rightarrow D_{B}(V) \rightarrow D_{B}\left(V^{\prime \prime}\right)
$$

and we have to show, that the map from $D_{B}(V)$ to $D_{B}\left(V^{\prime \prime}\right)$ is also surjective. Let $d=\operatorname{dim}_{F} V, d^{\prime}=\operatorname{dim}_{F} V^{\prime}, d^{\prime \prime}=\operatorname{dim}_{F} V^{\prime \prime}$. Then from (1) we have, since V is admissible $\operatorname{dim}_{E} D_{B}(V)=d$ and $\operatorname{dim}_{E} D_{B}\left(V^{\prime}\right) \leqslant d^{\prime}$ and $\operatorname{dim}_{E} D_{B}\left(V^{\prime \prime}\right) \leqslant d^{\prime \prime}$ but since $d=d^{\prime}+d^{\prime \prime}$, this implies that the map from $D_{B}(V)$ to $D_{B}\left(V^{\prime \prime}\right)$ is also surjective. Hence we prooved (a) and (c).

For (d) we have the commutative diagramm:

σ is induced by Σ and is therefore clearly injective. But since V_{1} and V_{2} are admissible, we have $\operatorname{dim}_{E}\left(D_{B}\left(V_{1}\right) \otimes_{E} D_{B}\left(V_{2}\right)\right)=\operatorname{dim}_{B}\left(B \otimes_{F}\left(V_{1} \otimes_{F} V_{2}\right)\right) \geqslant \operatorname{dim}_{E} D_{B}\left(V_{1} \otimes_{F} V_{2}\right)$, hence σ is an isomorphism.
For (e) we have to show that if V is admissible, so is V^{\star}. The case $\operatorname{dim}_{F} V=1$ is easy: If $V=F v$, then $D_{B}(V)=E(b \otimes v), V^{\star}=F v^{\star}, D_{B}\left(V^{\star}\right)=E\left(b^{-1} \otimes v^{\star}\right)$. If $\operatorname{dim}_{F} V \geqslant 1$:
We observed in the proof of (1) that $\operatorname{det}\left(\alpha_{V^{\star}}\right)=\alpha_{\operatorname{det} V^{\star}}$. Hence V admissible $\Rightarrow \operatorname{det} V$ admissible $\Rightarrow \operatorname{det} V^{\star}$ admissible $\Rightarrow V^{\star}$ admissible.
Finally we have to proof $D_{B}\left(V^{\star}\right) \cong D_{B}(V)^{\star}$. We have a commutative diagramm:

Let $f \in D_{B}\left(V^{\star}\right), t \in B \otimes_{F} V, g \in G$. Then $f(t)=g \circ f(t)=g\left(f\left(g^{-1}(t)\right)\right)$. If we assume $t \in D_{B}(V)$, then $g(f(t))=f(t)$, hence $f(t) \in E$. Therefor we get the induced homomorphism τ. From the diagramm τ is clearly injective. But since the dimensions of $D_{B}(V)$ and $D_{B}\left(V^{\star}\right)$ are equal, τ is an isomorphism.

3 Potentially semi-stable l-adic representations

We try now to give an alternative description of potentially semi-stable l-adic representations. This part is quite sketchy.
For E / \mathbb{C} an elliptic curve, you can find a $q \in \mathbb{C}^{\star}$ with $|q|<1$ such that $E(\mathbb{C}) \cong \mathbb{C}^{\star} / q^{\mathbb{Z}}$. For K a local field with residue characteristic $p>0$ and E / K an elliptic curve with multiplicative reduction, a result of Tate shows that $E\left(K^{\text {sep }}\right) \cong\left(K^{\text {sep }}\right)^{\star} / q^{\mathbb{Z}}$ for some $q \in \mathfrak{m}_{K}$ the maximal ideal of O_{K}. Hence $E_{l^{n}-\text { tors }}\left(K^{\text {sep }}\right)=<\zeta_{l^{n}}, q^{\frac{1}{l^{n}}}>$ where $G_{K}=$ $\operatorname{Gal}\left(K^{\mathrm{sep}} / K\right)$ acts on $\zeta_{l^{n}}$ via a cyclotomic character $\chi_{\text {cycl }}$ and on $q^{\frac{1}{l^{n}}}$ as $\sigma\left(q^{\frac{1}{l^{n}}}\right)=q^{\frac{1}{l^{n}}} \zeta_{l^{n}}^{i_{\sigma}}$. Therefore G_{K} acts on $T_{l}(E)$ via $\left(\begin{array}{cc}\chi_{\text {cycl }} & \star \\ 0 & 1\end{array}\right)$. Set $V:=T_{l}(E)(-1) \otimes_{\mathbb{Z}_{l}} \mathbb{Q}_{l}$. We have

$$
0 \rightarrow \mathbb{Q}_{l} \rightarrow V \rightarrow \mathbb{Q}_{l}(-1) \rightarrow 1
$$

and G_{K} acts on V via $\left(\begin{array}{cc}1 & \star \\ 0 & \chi_{\text {cycl }}^{-1}\end{array}\right)$. Write $\mathbb{Q}_{l}(-1)=\mathbb{Q}_{l} t^{-1}$ and let $u \in V$ be any lift of t^{-1} and define $B_{l}:=\mathbb{Q}_{l}[u]$ where we let G_{K} act on $1, u, u^{2}, \ldots$ via

$$
\left(\begin{array}{ccccc}
1 & \star & \star & \star & \cdots \\
0 & \chi_{\text {cycl }}^{-1} & \star & \star & \cdots \\
0 & 0 & \chi_{\text {cycl }}^{-2} & \star & \cdots \\
0 & 0 & 0 & \chi_{\text {cycl }}^{-3} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

and we have a map $N: B_{l} \rightarrow B_{l}(-1):=B_{l} \otimes \mathbb{Q}_{l}(-1): g(u) \mapsto g^{\prime}(u) \otimes t^{-1}$.
Our aim is the description of potentially semi-stable l-adic representation. We want to give a functor

$$
\boldsymbol{\operatorname { R e p }}_{\mathbb{Q}_{l}}\left(G_{K}\right) \rightarrow \boldsymbol{\operatorname { R e p }}_{K}(W D)
$$

where $\operatorname{Rep}_{K}(W D)$ is the category of Weil-Deligne-Representations. The objects of $\boldsymbol{\operatorname { R e p }}_{K}(W D)$ are pairs (D, N) where D is a \mathbb{Q}_{l}-vectorspace with action of G_{K} such that I_{K} acts trivial after a finite extention and $N: D \rightarrow D(-1)$ is a nilpotent endomorphism. The morphisms of $\operatorname{Rep}_{K}(W D)$ between (D, N) and $\left(D^{\prime}, N^{\prime}\right)$ are \mathbb{Q}_{l}-linear endomorphisms $\eta: D \rightarrow D^{\prime}$, who commute with G_{K} and such that the diagramm

commutes.

Theorem 3.1 The map

$$
V \mapsto \lim _{\leftarrow H \subseteq I_{K} \text { open }}\left(B_{l} \otimes_{\mathbb{Q}_{l}} V\right)^{H}
$$

defines an equivalence of categories

$$
\boldsymbol{\operatorname { R e p }}_{\mathbb{Q}_{l}}^{p . \text { st. }}\left(G_{K}\right) \rightarrow \boldsymbol{\operatorname { R e p }}_{K}(W D)
$$

between the category of potentially semi-stable \mathbb{Q}_{l}-representations of G_{K} and the category of Weil-Deligne-representations over K with quasi-inverse

$$
(D, N) \mapsto V_{l}(D, N):=\operatorname{Kern}\left(N: B_{l} \otimes_{\mathbb{Q}_{l}} D \rightarrow\left(B_{l} \otimes_{\mathbb{Q}_{l}} D\right)(-1)\right)
$$

One main ingredients of the proof is the observation that B_{l} is $\left(\mathbb{Q}_{l}, H\right)$-regular and the Theorem 2.4.

References

[FO] Jean-Marc Fontaine, Yi Ouyang Theory of p-adic Galois representations, Preprint

