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1 B-representations

Let G be a topological group and B a topological commutative ring with continous
G-action, i.e. for all g € G,b1,b2 € B we have g(b1 +b2) = g(b1) + g(b2) and g(by = b2) =
g(b1) = g(b2).

Example 1.1 B = L 5 K a Galois extention of fields, G = Gal(L/K).

Definition 1.2 A B-representation X of G is a B-modul of finite type X equipped with
a semi-linear continous G-action. Semi-linear means that for all g€ G,be B, x,x1,x2 €
X we have g(x1 + x2) = g(x1) + g(z2) and g(bx) = g(b)g(x).

If B =F,, we call it a mod-p-representation.
If B =Qp, we call it a p-adic representation.
If G acts trivial on B, we call it a linear representation.

Definition 1.3 A B-representation X of G is called free if the underlying B-modul X
1s free.

Definition 1.4 A free B-representation X of G is called trivial if one of the equivalent
conditions hold:

(a) There is a Basis of X over B in X©.
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(b) X = BY as G-modules with the natural G-action on B.

Let us look at three key examples:

Example 1.5 If F € B® is a subfield, and V an F-representation of G and let G act
on X :=BQrV as gb®x) = g(b) ® g(r). Then X is a free B-representation (free,
since V' was just a vector space over F).

Example 1.6 Let Z,(1) = T,,(G,,,/Qp) = limyuyn (Q,) be the p-adic Tate-module of the

multiplicative group and Qp(1) = Zy(1) ®z, Qp. Set Qp(—1) = Homg,, (Qy(1),Qp)
where Gg, denotes the absolute Galois group of @, and define Q,(i) = Q,(1)®" for all

i € Z. Then the Q,(i) are Gg,-modules. It is a result of Tate that with B := Q, =:
Cp =: C the obtained B-representations Q,(i) ®q, B are trivial if and only if i = 0. In
later talks of the seminar we will construct a ring Bqr such that Q, (i) ®g, Bqr is trivial
for all i.

Example 1.7 Let E/Q, be an elliptic curve and set V, = T,(E/Q,) ® Qp. Then
Vp ®q, Bdr is trivial. In yet later talks we will construct a subring Beis of Bgr such
that V), ®q, Beyis 1s trivial if E has good reduction.

Our first goal is an interpretation of equivalence classes of free B-representations of G
of rank d as cohomology classes in HY, (G, GL4(B)), where two free B-representations
are equivalent if they only differ by a change of basis.

Before we give the proposition we recall some facts about group cohomology: Let M
be any (multiplicativly written) topological G-group. Then HO (G, M) = M% and
HY (G, M) = ZY(G, M)/ ~ where ZY(G, M) = {f : G - M continous | f(g1 * go) =
f(g91) * (91f(g2))} and f1 ~ fo if there is an a € M such that fi(g) = a™' f2(g)a(g) for
all g € G.

Thus H},.(G, M) is a pointet set with the distinguished point being the class of the

cocylce f(g) = 1.
We recall the famous theorem Hilbert 90:

Proposition 1.8 Let L/K be a Galois extention of fields. Then
(a) HY(Gal(L/K),L) =0
(b) HY(Gal(L/K),L*) = 1
(¢c) HY(Gal(L/K),GL4(L)) =1

Now we can formulate the proposition:

Proposition 1.9 There is a natural bijection between equivalence classes of free B-
representations of G of rank d and H} (G, GLg(B)), denoted by X + [X]. Moreover
X is trivial if and only if [X] is the distinguished point of HL (G, GLq(B)).

Remark 1.10 The proposition and Hilbert 90 imply that for L/K a Galois extention
any L-representation of Gal(L/K) is trivial.

PROOF: Let X be a free B-representation of G of rank d and {ey, ..., eq} a basis of X/B.
Write g(eq,...,eq) = (e, ...eq)A(g). Then we get a map o : G — Matg(B), g — A(g).
We have to check the following for claims:
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(a) aeZ}

cont

(G,Matq(B))
(b) A(g) € GL4(B) for all ge G

(c) If {€},...,€}} is another basis of X/B and P is the basechange matrix, define
A'(g) as above, then A'(g) = P~1A(g)g(P).

(d) Given a € Z} (G, GLy(B)) there is a unique semi-linear action of G on X = B¢

such that [X] = a.

These claims are all easy to check.
|

2 Regular (F,G)-rings

Assume now E := BY is a field and let F' be a closed subfield of E. Denote by Rep(G)
the category of F-representations of G. If B is a domain, then the G-action on B extends

to €= Frac(B) as g(3}) = iz}

Definition 2.1 B is (F,G)-regular, if
(a) B is a domain.
(b) B¢ = CC.
(c) If b# 0 and Gb < Fb we have b € B*.

As Hélene explained, Repy(G) is a neutral Tannakian category.

Definition 2.2 A sub-Tannakin category of Repr(G) is a strictly full subcategory C
wich is closed under direct sums, tensor products and duals and contains the unit rep-
resentation.

Definition 2.3 An F-representation V of G is called B-admissible, if BRpV is trivial.
Let RepB(G) denote the full subcategory of B-admissible F-representations of G.

We define a functor Repy(G) — Vecg : V + Dp(V) := (B®r V) and for each V a
map ay : BQr Dp(B) > BV : A\Qx +— Az for A€ B,z € Dp(V). ay is a B-linear
G-equivariant map, where G acts on B ®g Dp(V) as g(A®z) = g(\) ® x.

This functor maps objects, wich are hard to understand (F-representations of G) to
objects, wich are easy to understand (vector spaces over the field £). The next theorem
is the main theorem of my talk, wich showes some properties of this functor, once we
have assume B to be (F, G)-regular.

Theorem 2.4 Assume B to be (F,G)-reqular. Then

(1) For all V € Repp(G) we have ay is injective and dimg Dp(V) < dimp(V).
Moreover dimg Dp(V') = dimp(V) iff ay is an isomorphism iff V' is B-admissible.

(2) RepZ(G) is a sub-Tannakian category and Dp restricted to Rep?(G) is an exact
and faithfull tensor functor.

For the second part, we have to show:
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(a) Dp preserves exact sequences.
(b) V # 0 implies Dp(V) # 0 (this is clear)
(
(d

)
)
c¢) If V is admissible, then subs and quotiens of V' are also admissible.
) Dp(F) = E (this is clear)

)

(e) If V4, V, are admissible, then V; ® V5 is admissible and
Dp(V1) @ Dp(V2) = Dp(Vi ® Va).

(f) If V is admissible, then V* is admissible and Dp(V*) = (Dp(V))*.

PRrOOF: (1) First we proof that ay is injective: Let C' = Frac(B). Since B is (F,G)-
regular, we have C¢ = B¢ = E. So we have the commutative diagram:

ay

BQ®g DB(V)

BRrV

B®g Dc(V)

C®g Dc(V) v CRrV

and hence for the injectivity we can restrict to the case B = C a field. What we have
to show is that given h > 1,x1,...,25 € Dp(V) linear independent over E they remain
linear independet over B. We use induction. For h = 1 there is nothing to show. So let
h > 2 and assume

h
Z )\zmz = 07)\2 e B.
i=1

Since B is a field, we can assume A\, = —1, so

h—1
Iy = 2 )\zxz
i=1

But since all x; are G-invariant, we have for all g € G:

Z)\l‘z—fbh—9$h = g( 2/\9@@ =Z

So by induction we have \; = g(\;) for all g € G hence \; € B = E, wich is a
contradiction. Therefore ayy is injective.

For the second assertion of (1): If ary is an isomorphism, then dimg Dp(V) = dimp V =
rankp B ®p V. Conversly, if dimg Dg(B) = dimp(V'), we choose bases {v1,...,v4} of
V/F and {ey,...,eq} of Dp(V)/E and write

d
€; = Z bijui.
i=1

The matrix (b;;) is called period matrix, since ay is injective, we have b = det((b;;)) # 0.
We have to show that b is in B*. Let detV = /\%V = Fvwithv=v1 A+ Avg and
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g(v) = n(g)v with n : G — F* a character. Fore=e; A --- Aeg € /\dE Dp(V) we have
e =bv.

But also for all g € G: bv = e = g(e) = g(bv) = g(b)n(g)v. Therefore g(b) = n(g)~1b for
all g € G. Since B is (F, G)-regular, we have b € B*.

For the second equivalence: V' is B-admissible is by definition equivalent to the existence
of a B-basis {x1,...,24} od B®p V such that x; € Dg(V'), therefore this is equivalent
to ay being surjective. Since ay is always injective, this is equivalent to «y being an
isomorphism.

(2) Let V be admissible and V' a sub-representation. Then we obtain an exact sequence
of F-vectorspaces:
0>V VsV =V/V'-0

tensoring with B gives the exact sequence:
0->BRrV - B®rV -BrV"—>0
and since taking G-invariance is an left-exact functor, we obtain:
0— Dp(V') —» Dp(V) — Dp(V")

and we have to show, that the map from Dp(V) to Dg(V") is also surjective. Let
d=dimp V,d" = dimp V',d" = dimp V”. Then from (1) we have, since V is admissible
dimg Dp(V) = d and dimg Dp(V') < d’ and dimg Dp(V") < d” but since d = d’' + d”,
this implies that the map from Dg(V') to Dg(V") is also surjective. Hence we prooved
(a) and (c).

For (d) we have the commutative diagramm:

(B®FV1)®(B®FV2)E:B®F(V1®FV2)

Dp(Vi) @p Dp(Va) %= Dp(Vi @r Va)

o is induced by ¥ and is therefore clearly injective. But since V; and V5 are admissible,
we have dimg(Dp(V1) @ Dp(V2)) = dimp(B ®r (Vi ®F V2)) = dimg Dp(Vi ®F Va),
hence ¢ is an isomorphism.

For (e) we have to show that if V' is admissible, so is V*. The case dimp V' =1 is easy:
If V = Fu, then Dg(V) = E(b®uv), V* = Fv*, Dg(V*) = E(b"'®v*). If dimp V > 1:
We observed in the proof of (1) that det(ay+) = agetv+. Hence V admissible = det V'
admissible = det V* admissible = V* admissible.

Finally we have to proof Dp(V*) = Dp(V)*. We have a commutative diagramm:

B®pV* = (BQr V)*
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Let f € D(V*),t € B®r V,g € G. Then f(t) = go f(t) = g(f(g71(t))). If we
assume t € Dp(V), then g(f(t)) = f(t), hence f(t) € E. Therefor we get the induced
homomorphism 7. From the diagramm 7 is clearly injective. But since the dimensions
of Dp(V) and Dg(V*) are equal, 7 is an isomorphism. n

3 Potentially semi-stable /[-adic representations

We try now to give an alternative description of potentially semi-stable [-adic represen-
tations. This part is quite sketchy.

For E/C an elliptic curve, you can find a ¢ € C* with |¢| < 1 such that E(C) = C*/q¢”.
For K a local field with residue characteristic p > 0 and E/K an elliptic curve with
multiplicative reduction, a result of Tate shows that E(K*P) =~ (K*P)*/¢* for some

g € mg the maximal ideal of Ox. Hence Ejpn_to(K5P) =< Qn,q%" > where G =
Gal(K*®P/K) acts on (j» via a cyclotomic character xcyc and on ¢i™ as o(q7™) = qli"CZ;{.

Therefore G acts on Tj(E) via (X‘gd I) Set V := T}(E)(—1) ®z, Q;. We have

O—)Ql—>V—>Ql(—1)—>1

1
and Gk acts on V via ( * > Write Q;(—1) = Q;t ! and let u € V be any lift of

0 L
chcl

t~1 and define B; := Q;[u] where we let G act on 1,u,u?,... via

1 * * *
-1

0 chcl *2 *
0 0 chcl *3
0 0 0 Xga

and we have a map N : B — Bi(—1) := B;®Qi(-1) : g(u) = ¢'(u) @t~ 1.
Our aim is the description of potentially semi-stable I-adic representation. We want to

give a functor
Repg, (Gx) — Repy (WD)

where Repy (WD) is the category of Weil-Deligne-Representations. The objects of
Repy (WD) are pairs (D, N) where D is a Q-vectorspace with action of G such
that I acts trivial after a finite extention and N : D — D(—1) is a nilpotent endo-
morphism. The morphisms of Repy (WD) between (D, N) and (D', N') are Q-linear
endomorphisms 7 : D — D', who commute with G and such that the diagramm

D ! D'

commutes.
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Theorem 3.1 The map
V- lim (B ®q, V)H

—HC Ik open
defines an equivalence of categories
Repngt‘(GK) — Repy (WD)

between the category of potentially semi-stable Q;-representations of G and the category
of Weil-Deligne-representations over K with quasi-inverse

(D,N) - Vi(D,N) :=Kern(N : Bj®qg, D — (B; ®qg, D)(—1)).

One main ingredients of the proof is the observation that B; is (Q;, H)-regular and the
Theorem 2.4.
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