
Quaternion algebras over fields

Definitions and first results

Let K be a field and L | K a quadratic extension. Let θ ∈ K.

Definition: H := L⊕ Lu with u ∈ H such that u2 = θ and uλ = λu for all

λ ∈ L, with ¯ : L −→ L the non-trivial automorphism from L to L.

Notation: H := (L, ¯ , θ)

Remark: H is a central simple algebra over K. A quaternion algebra is a

central simple algebra of dimension 4 over K.

We also introduce a second

Definition: Let a, b ∈ K∗ and H := (a,b
K

) be the algebra generated by i, j

with the relations i2 = a, j2 = b, ij = −ji = k. We have k2 = −ab. As

K-vectorspace H is generated by the elements {1, i, j, k}.
Remark: For L = K(i), θ = b, u = j, i2 = a we get: L ⊕ Lu ∼= (a,b

K
). The

elements a, b ∈ K∗ as well as L, θ are not unique, because of: (a,b
K

) ∼= ( b,a
K

) ∼=
(a,−ab

K
) ∼= (ac2,b

K
).

For a field extension M | K we have: M ⊗K (a,b
K

) ∼= (a,b
M

), respectivly:

M ⊗K (L, ¯ , θ) ∼= (M ⊗K L, ¯ , θ)

Definition: Let h = α + iβ + jγ + kδ ∈ H with α, β, γ, δ ∈ K. h̄ :=

α − iβ − jγ − kδ, respectivly: for h = λ1 + λ2u define: h̄ = λ1 − λ2u.

¯ : H −→ H is an involution, extending the non-trivial K-automorphism

¯ : L −→ L, called conjugation. This conjugation is additive and anti-

communtative.

For h ∈ H we define n(h) := h · h̄, t(h) := h + h̄. This is the reduced norm

and the reduced trace. The reduced norm defines a quadratic form on H

Also define: H ×H −→ K given by: (h1, h2) 7→< h1, h2 >:= t(h1 · h2).

Lemma

• h ∈ H is invertible ⇐⇒ n(h) 6= 0

• <,> defines a K-linear, non-degenerate bilinearform.
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Remark: Let H −→ EndK(H), h 7→ lh : a 7→ h · a be the left regular

representation. Then it holds: 2t(h) = Tr(lh) and n(h)2 = det(lh).

Definition: Let F | K be an extension. F is called splitting field for H ⇐⇒
HF := F ⊗K H ∼= M2(F ). A F -representation is an inclusion H −→ M2(F ).

Examples:

1. M2(K) ∼= (1,−1
K

). Let L = K(i) with i2 = −1 and j2 = 1. Consider

the matrices e1 =

(
1 0

0 1

)
, ei =

(
0 −1

1 0

)
, ej =

(
0 1

1 0

)
, eij =

(
−1 0

0 1

)
. This gives an K-algebra-isomorphism:

e1 7→ 1, ei 7→ i, ej 7→ j, eij 7→ ij

2. H := (−1,−1
R ) the real quaternions have a C-representation:

H = {
(

z1 z2

−z̄2 z̄1

)
∈ M2(C)}

H = R(i)⊕R(i)j with i2 = −1, j2 = −1. We have: H⊗RC ∼= M2(C)

with H � M2(R).

3. Let a, b ∈ K∗. Consider:

I =

(
0 1

a 0

)
, J =

( √
b 0

0 −
√

b

)
, E2 =

(
1 0

0 1

)

Then it holds: I2 = aE2, J2 = bE2, IJ = −JI =

(
0 −

√
b

a
√

b 0

)

For α, β, γ, δ ∈ K∗ one gets:

αE2 + βI + γJ + δIJ =

(
α + γ

√
(b) β − δ

√
b

a(β + δ
√

b) α− γ
√

(b)

)

With λs ∈ L = K(
√

b) for s = 1, 2, we obtain:

(
a, b

K
) ∼= {

(
λ1 λ2

aλ̄2 λ̄1

)
∈ M2(K(

√
b))}

and recover the splitting field as K(
√

b).
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Remark: Let H be a quaternion algebra over K.

Then B(h1, h2) := 1
2
t(h1 · h̄2) ∈ K gives a symmetric, non-degenerate, bilin-

earform. We get B(h, h) = n(h).

For pure quaternions H0 = {h ∈ H | h = βi + γj + δij} the set {i, j, ij}
forms an orthogonal basis. K is orthogonal to the span of this set, so that

(H,B) as quadratic space, has {1, i, j, ij} as orthogonal basis.

We have the following

Proposition: For H = (a,b
K

) and H ′ = ( c,d
K

) with a, b, c, d ∈ K the following

statements are equivalent:

1. H and H ′ are isomorphic K-algebras

2. H and H ′ are isometric as quadratic spaces

3. H0 and H ′
0 are isometric as quadratic spaces

Proof : done in the seminar

Corollary: (a,a
K

) ∼= (a,−1
K

) because of their isometric normforms.

Theorem: For H = (a,b
K

) the following statements are equivalent:

1. H = (1,−1
K

) ∼= M2(K)

2. H is not a division algebra

3. H is isotrop as quadratic space

4. a ∈ NormF |K(F ) with F = K(
√

b)

Proof : done in the seminar

Corollary: Let a ∈ K∗, then (a,−a
K

) ∼= (1,a
K

) ∼= M2(K). If a 6= 0, 1 then

(a,1−a
K

) ∼= M2(K).

Remark: For a finite field K, not of characteristic 2, we get: (a,b
K

) ∼= M2(K)

for all a, b ∈ K
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The Skolem-Noether-Theorem

Lemma: ϕ : H ⊗K H −→ EndK(H), h1 ⊗K h2 7→ (h 7→ h1 · h · h2) is a

K-algebra isomorphism.

Proof : done in the seminar

Theorem: Let L | K be a quadratic extension contained in H. τ : L −→
L the non-trivial K-automorphism of L. Then there exists a K-algebra-

automorphism σ : H −→ H which extends τ , and is of the form: σ(h) =

a · h · a−1 for an a ∈ H∗. Every K-automorphism σ : H −→ H is an inner

automorphism.

Proof : done in the seminar

Corollary: Let L | K be a quadratic extension contained in H. Then

there exists θ ∈ K∗ such that H ∼= (L, ¯ , θ). θ depends on the non-trivial

automorphism τ : L −→ L.

Proof : done in the seminar

Remark: Let Aut(H | K) be the group of K-automorphisms of H. Then

Aut(H | K) ∼= H∗/K∗.

Proposition: Let H = (L, ¯ , θ). Then it holds: H ∼= M2(K) ⇐⇒ θ ∈ n(L).

Proof : =⇒: If H is not a division algebra then there exists an element

h 6= 0 ∈ H with n(h) = 0. Let h be written in the form h = λ + µu with

u2 = θ ∈ K∗. Then it follows: 0 = n(h) = λ · λ̄− µ · µ̄ · θ with λ, µ 6= 0. This

gives θ = n(λ
µ
) ∈ n(L).

⇐=: θ ∈ n(L) ⇐⇒ θ = λ · λ̄ for a λ ∈ L. Consider h := λ + u 6= 0 ∈ H. For

this element we get: n(h) = 0. So H is not a division algebra.
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Further results

Proposition (Frobenius): Let D be a finite dimensional division algebra

with center R. Then D ∼= H (the real quaternions)

Proof : Let d ∈ D − R. Then R(d) ∼= R(i) ∼= C with i2 = −1. So, R(d) is

proper contained in D. Let d̃ ∈ D be an element such that R(d̃) ∼= R(u) with

u2 = −1 and u /∈ R(i). The elements i, u do not commute, because otherwise

R(i, u) would be a field extension. But then u ∈ R(i). Consider now the

element j := iui + u. For this we get: ij = −ji. Let H := R(i) +R(i)j ⊂ D,

and τ : i 7→ −i be conjugation in R(i). Then ϕj : H −→ H, defined as

x 7→ j · x · j−1 extends τ , because of ϕj(i) = −i. We now claim that j2 ∈ R:

j2 ·i = i·j2 So, j2 ∈ R(i). τ(j2) = ϕj(j
2) = j2. So, j2 ∈ R and j2 < 0 because

otherwise j ∈ R = center(D). But then we would get jij−1 = −i = i, which

is absurd. So we conclude that H ∼= H ⊂ D. If H is proper contained in D,

we can choose an element d̂ ∈ D − H such that d̂i = id̂ and d̂2 ∈ R. We

proceed as done before. But then we get: d̂ji = d̂(−i)j = id̂j, which means

that dj ∈ R(i). But then d̂ ∈ H which contradicts our choise. =⇒ H ∼= D.

We conclude the section with a remarkable property of quaternion algebras:

Proposition: Let a, b, c ∈ K∗. Then it holds:

(
a, b

K
)⊗K (

a, c

K
) ∼= (

a, bc

K
)⊗K M2(K)

Proof : Let H1 := (a,b
K

) ∼=< 1, i1, j1, k1 >K with i21 = a, j2
1 = b, k2

1 = −ab

and similar H2 := (a,c
K

) ∼=< 1, i2, j2, k2 >K . Consider H3 :=< 1 ⊗ 1, i1 ⊗
1, j1 ⊗ j2, k1 ⊗ j2 >K=:< 1, I, J, IJ >K . This is a 4-dimensional subalgebra

of H1⊗H2. We have: I2 = a, J2 = bc, IJ = −JI. This gives H3
∼= (a,bc

K
).

Define H4 :=< 1⊗ 1, 1⊗ j2, i1⊗ k2,−ci1⊗ i2 >K=< 1, Ĩ , J̃ , K̃ >K . We then

get: Ĩ2 = c, J̃2 = −a2c, ĨJ̃ = J̃ Ĩ. This gives: H4 = ( c,−a2c
K

). Using

the classification by quadratic forms we obtain that H4
∼= M2(K). Further

more we get that H1⊗H2
∼= H3⊗H4

∼= H3⊗M2(K). This follows from the

fact that {1, I, J,K} commutes with {1, Ĩ , J̃ , K̃} elementwise. Evaluating

the two tensorproducts gives the proposition.

Corollary: H⊗H ∼= M4(R).

Proof : (−1,−1
R )⊗R (−1,−1

R ) ∼= (−1,1
R )⊗R M2(R) ∼= M2(R)⊗R M2(R) ∼= M4(R).
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