Quaternion algebras over fields

Definitions and first results

Let K be a field and $L \mid K$ a quadratic extension. Let $\theta \in K$.
Definition: $H:=L \oplus L u$ with $u \in H$ such that $u^{2}=\theta$ and $u \lambda=\bar{\lambda} u$ for all $\lambda \in L$, with ${ }^{-}: L \longrightarrow L$ the non-trivial automorphism from L to L.

Notation: $H:=\left(L,{ }^{-}, \theta\right)$
Remark: H is a central simple algebra over K. A quaternion algebra is a central simple algebra of dimension 4 over K.

We also introduce a second
Definition: Let $a, b \in K^{*}$ and $H:=\left(\frac{a, b}{K}\right)$ be the algebra generated by i, j with the relations $i^{2}=a, j^{2}=b, i j=-j i=k$. We have $k^{2}=-a b$. As K-vectorspace H is generated by the elements $\{1, i, j, k\}$.

Remark: For $L=K(i), \theta=b, u=j, i^{2}=a$ we get: $L \oplus L u \cong\left(\frac{a, b}{K}\right)$. The elements $a, b \in K^{*}$ as well as L, θ are not unique, because of: $\left(\frac{a, b}{K}\right) \cong\left(\frac{b, a}{K}\right) \cong$ $\left(\frac{a,-a b}{K}\right) \cong\left(\frac{a c^{2}, b}{K}\right)$.

For a field extension $M \mid K$ we have: $M \otimes_{K}\left(\frac{a, b}{K}\right) \cong\left(\frac{a, b}{M}\right)$, respectivly: $M \otimes_{K}\left(L,{ }^{-}, \theta\right) \cong\left(M \otimes_{K} L,{ }^{-}, \theta\right)$

Definition: Let $h=\alpha+i \beta+j \gamma+k \delta \quad \in H$ with $\alpha, \beta, \gamma, \delta \in K . \bar{h}:=$ $\alpha-i \beta-j \gamma-k \delta$, respectivly: for $h=\lambda_{1}+\lambda_{2} u$ define: $\bar{h}=\lambda_{1}-\lambda_{2} u$.

- : $H \longrightarrow H$ is an involution, extending the non-trivial K-automorphism - : $L \longrightarrow L$, called conjugation. This conjugation is additive and anticommuntative.

For $h \in H$ we define $n(h):=h \cdot \bar{h}, \quad t(h):=h+\bar{h}$. This is the reduced norm and the reduced trace. The reduced norm defines a quadratic form on H

Also define: $H \times H \longrightarrow K$ given by: $\left(h_{1}, h_{2}\right) \mapsto<h_{1}, h_{2}>:=t\left(h_{1} \cdot h_{2}\right)$.

Lemma

- $h \in H$ is invertible $\Longleftrightarrow n(h) \neq 0$
- \langle,$\rangle defines a K$-linear, non-degenerate bilinearform.

Remark: Let $H \longrightarrow \operatorname{End}_{K}(H), \quad h \mapsto l_{h}: a \mapsto h \cdot a$ be the left regular representation. Then it holds: $2 t(h)=\operatorname{Tr}\left(l_{h}\right)$ and $n(h)^{2}=\operatorname{det}\left(l_{h}\right)$.

Definition: Let $F \mid K$ be an extension. F is called splitting field for $H \Longleftrightarrow$ $H_{F}:=F \otimes_{K} H \cong M_{2}(F)$. A F-representation is an inclusion $H \longrightarrow M_{2}(F)$.

Examples:

1. $M_{2}(K) \cong\left(\frac{1,-1}{K}\right)$. Let $L=K(i)$ with $i^{2}=-1$ and $j^{2}=1$. Consider the matrices $e_{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), e_{i}=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right), e_{j}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), e_{i j}=$ $\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$. This gives an K-algebra-isomorphism:

$$
e_{1} \mapsto 1, \quad e_{i} \mapsto i, \quad e_{j} \mapsto j, \quad e_{i j} \mapsto i j
$$

2. $\mathbb{H}:=\left(\frac{-1,-1}{\mathbb{R}}\right)$ the real quaternions have a \mathbb{C}-representation:

$$
\mathbb{H}=\left\{\left(\begin{array}{cc}
z_{1} & z_{2} \\
-\overline{z_{2}} & \overline{z_{1}}
\end{array}\right) \in M_{2}(\mathbb{C})\right\}
$$

$\mathbb{H}=\mathbb{R}(i) \oplus \mathbb{R}(i) j$ with $i^{2}=-1, \quad j^{2}=-1$. We have: $\mathbb{H} \otimes_{\mathbb{R}} \mathbb{C} \cong M_{2}(\mathbb{C})$ with $\mathbb{H} \nexists M_{2}(\mathbb{R})$.
3. Let $a, b \in K^{*}$. Consider:

$$
I=\left(\begin{array}{ll}
0 & 1 \\
a & 0
\end{array}\right), \quad J=\left(\begin{array}{cc}
\sqrt{b} & 0 \\
0 & -\sqrt{b}
\end{array}\right), \quad E_{2}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Then it holds: $I^{2}=a E_{2}, \quad J^{2}=b E_{2}, \quad I J=-J I=\left(\begin{array}{cc}0 & -\sqrt{b} \\ a \sqrt{b} & 0\end{array}\right)$
For $\alpha, \beta, \gamma, \delta \in K^{*}$ one gets:

$$
\alpha E_{2}+\beta I+\gamma J+\delta I J=\left(\begin{array}{cc}
\alpha+\gamma \sqrt{(b)} & \beta-\delta \sqrt{b} \\
a(\beta+\delta \sqrt{b}) & \alpha-\gamma \sqrt{(b)}
\end{array}\right)
$$

With $\lambda_{s} \in L=K(\sqrt{b})$ for $s=1,2$, we obtain:

$$
\left(\frac{a, b}{K}\right) \cong\left\{\left(\begin{array}{cc}
\lambda_{1} & \lambda_{2} \\
a \overline{\lambda_{2}} & \overline{\lambda_{1}}
\end{array}\right) \in M_{2}(K(\sqrt{b}))\right\}
$$

and recover the splitting field as $K(\sqrt{b})$.

Remark: Let H be a quaternion algebra over K.
Then $B\left(h_{1}, h_{2}\right):=\frac{1}{2} t\left(h_{1} \cdot \overline{h_{2}}\right) \in K$ gives a symmetric, non-degenerate, bilinearform. We get $B(h, h)=n(h)$.

For pure quaternions $H_{0}=\{h \in H \mid h=\beta i+\gamma j+\delta i j\}$ the set $\{i, j, i j\}$ forms an orthogonal basis. K is orthogonal to the span of this set, so that (H, B) as quadratic space, has $\{1, i, j, i j\}$ as orthogonal basis.

We have the following
Proposition: For $H=\left(\frac{a, b}{K}\right)$ and $H^{\prime}=\left(\frac{c, d}{K}\right)$ with $a, b, c, d \in K$ the following statements are equivalent:

1. H and H^{\prime} are isomorphic K-algebras
2. H and H^{\prime} are isometric as quadratic spaces
3. H_{0} and H_{0}^{\prime} are isometric as quadratic spaces

Proof: done in the seminar
Corollary: $\left(\frac{a, a}{K}\right) \cong\left(\frac{a,-1}{K}\right)$ because of their isometric normforms.
Theorem: For $H=\left(\frac{a, b}{K}\right)$ the following statements are equivalent:

1. $H=\left(\frac{1,-1}{K}\right) \cong M_{2}(K)$
2. H is not a division algebra
3. H is isotrop as quadratic space
4. $a \in \operatorname{Norm}_{F \mid K}(F)$ with $F=K(\sqrt{b})$

Proof: done in the seminar
Corollary: Let $a \in K^{*}$, then $\left(\frac{a,-a}{K}\right) \cong\left(\frac{1, a}{K}\right) \cong M_{2}(K)$. If $a \neq 0,1$ then $\left(\frac{a, 1-a}{K}\right) \cong M_{2}(K)$.
Remark: For a finite field K, not of characteristic 2, we get: $\left(\frac{a, b}{K}\right) \cong M_{2}(K)$ for all $a, b \in K$

The Skolem-Noether-Theorem

Lemma: $\varphi: H \otimes_{K} H \longrightarrow \operatorname{End}_{K}(H), \quad h_{1} \otimes_{K} h_{2} \mapsto\left(h \mapsto h_{1} \cdot h \cdot h_{2}\right)$ is a K-algebra isomorphism.

Proof: done in the seminar
Theorem: Let $L \mid K$ be a quadratic extension contained in $H . \tau: L \longrightarrow$ L the non-trivial K-automorphism of L. Then there exists a K-algebraautomorphism $\sigma: H \longrightarrow H$ which extends τ, and is of the form: $\sigma(h)=$ $a \cdot h \cdot a^{-1}$ for an $a \in H^{*}$. Every K-automorphism $\sigma: H \longrightarrow H$ is an inner automorphism.

Proof: done in the seminar
Corollary: Let $L \mid K$ be a quadratic extension contained in H. Then there exists $\theta \in K^{*}$ such that $H \cong\left(L,^{-}, \theta\right)$. θ depends on the non-trivial automorphism $\tau: L \longrightarrow L$.

Proof: done in the seminar
Remark: Let $\operatorname{Aut}(H \mid K)$ be the group of K-automorphisms of H. Then $\operatorname{Aut}(H \mid K) \cong H^{*} / K^{*}$.

Proposition: Let $H=\left(L,^{-}, \theta\right)$. Then it holds: $H \cong M_{2}(K) \Longleftrightarrow \theta \in n(L)$. Proof: \Longrightarrow : If H is not a division algebra then there exists an element $h \neq 0 \in H$ with $n(h)=0$. Let h be written in the form $h=\lambda+\mu u$ with $u^{2}=\theta \in K^{*}$. Then it follows: $0=n(h)=\lambda \cdot \bar{\lambda}-\mu \cdot \bar{\mu} \cdot \theta$ with $\lambda, \mu \neq 0$. This gives $\theta=n\left(\frac{\lambda}{\mu}\right) \in n(L)$.
$\Longleftarrow: \theta \in n(L) \Longleftrightarrow \theta=\lambda \cdot \bar{\lambda}$ for a $\lambda \in L$. Consider $h:=\lambda+u \neq 0 \in H$. For this element we get: $n(h)=0$. So H is not a division algebra.

Further results

Proposition (Frobenius): Let D be a finite dimensional division algebra with center \mathbb{R}. Then $D \cong \mathbb{H}$ (the real quaternions)

Proof: Let $d \in D-\mathbb{R}$. Then $\mathbb{R}(d) \cong \mathbb{R}(i) \cong \mathbb{C}$ with $i^{2}=-1$. So, $\mathbb{R}(d)$ is proper contained in D. Let $\tilde{d} \in D$ be an element such that $\mathbb{R}(\tilde{d}) \cong \mathbb{R}(u)$ with $u^{2}=-1$ and $u \notin \mathbb{R}(i)$. The elements i, u do not commute, because otherwise $\mathbb{R}(i, u)$ would be a field extension. But then $u \in \mathbb{R}(i)$. Consider now the element $j:=i u i+u$. For this we get: $i j=-j i$. Let $\mathcal{H}:=\mathbb{R}(i)+\mathbb{R}(i) j \subset D$, and $\tau: i \mapsto-i$ be conjugation in $\mathbb{R}(i)$. Then $\varphi_{j}: \mathcal{H} \longrightarrow \mathcal{H}$, defined as $x \mapsto j \cdot x \cdot j^{-1}$ extends τ, because of $\varphi_{j}(i)=-i$. We now claim that $j^{2} \in \mathbb{R}$: $j^{2} \cdot i=i \cdot j^{2}$ So, $j^{2} \in \mathbb{R}(i) . \tau\left(j^{2}\right)=\varphi_{j}\left(j^{2}\right)=j^{2}$. So, $j^{2} \in \mathbb{R}$ and $j^{2}<0$ because otherwise $j \in \mathbb{R}=$ center (D). But then we would get $j i j^{-1}=-i=i$, which is absurd. So we conclude that $\mathcal{H} \cong \mathbb{H} \subset D$. If \mathbb{H} is proper contained in D, we can choose an element $\hat{d} \in D-\mathbb{H}$ such that $\hat{d i}=i \hat{d}$ and $\hat{d}^{2} \in \mathbb{R}$. We proceed as done before. But then we get: $\hat{d} j i=\hat{d}(-i) j=i \hat{d} j$, which means that $d j \in \mathbb{R}(i)$. But then $\hat{d} \in \mathbb{H}$ which contradicts our choise. $\Longrightarrow \mathbb{H} \cong D$.

We conclude the section with a remarkable property of quaternion algebras:
Proposition: Let $a, b, c \in K^{*}$. Then it holds:

$$
\left(\frac{a, b}{K}\right) \otimes_{K}\left(\frac{a, c}{K}\right) \cong\left(\frac{a, b c}{K}\right) \otimes_{K} M_{2}(K)
$$

Proof: Let $H_{1}:=\left(\frac{a, b}{K}\right) \cong<1, i_{1}, j_{1}, k_{1}>_{K}$ with $i_{1}^{2}=a, \quad j_{1}^{2}=b, \quad k_{1}^{2}=-a b$ and similar $H_{2}:=\left(\frac{a, c}{K}\right) \cong<1, i_{2}, j_{2}, k_{2}>_{K}$. Consider $H_{3}:=<1 \otimes 1, i_{1} \otimes$ $1, j_{1} \otimes j_{2}, k_{1} \otimes j_{2}>_{K}=:<\mathbf{1}, I, J, I J>_{K}$. This is a 4-dimensional subalgebra of $H_{1} \otimes H_{2}$. We have: $I^{2}=a, \quad J^{2}=b c, \quad I J=-J I$. This gives $H_{3} \cong\left(\frac{a, b c}{K}\right)$. Define $H_{4}:=<1 \otimes 1,1 \otimes j_{2}, i_{1} \otimes k_{2},-c i_{1} \otimes i_{2}>_{K}=<\mathbf{1}, \tilde{I}, \tilde{J}, \tilde{K}>_{K}$. We then get: $\tilde{I}^{2}=c, \quad \tilde{J}^{2}=-a^{2} c, \quad \tilde{I} \tilde{J}=\tilde{J} \tilde{I}$. This gives: $H_{4}=\left(\frac{c,-a^{2} c}{K}\right)$. Using the classification by quadratic forms we obtain that $H_{4} \cong M_{2}(K)$. Further more we get that $H_{1} \otimes H_{2} \cong H_{3} \otimes H_{4} \cong H_{3} \otimes M_{2}(K)$. This follows from the fact that $\{1, I, J, K\}$ commutes with $\{1, \tilde{I}, \tilde{J}, \tilde{K}\}$ elementwise. Evaluating the two tensorproducts gives the proposition.

Corollary: $\mathbb{H} \otimes \mathbb{H} \cong M_{4}(\mathbb{R})$.
Proof: $\left(\frac{-1,-1}{\mathbb{R}}\right) \otimes_{\mathbb{R}}\left(\frac{-1,-1}{\mathbb{R}}\right) \cong\left(\frac{-1,1}{\mathbb{R}}\right) \otimes_{\mathbb{R}} M_{2}(\mathbb{R}) \cong M_{2}(\mathbb{R}) \otimes_{\mathbb{R}} M_{2}(\mathbb{R}) \cong M_{4}(\mathbb{R})$.

