SHIMURA CURVES III

KAY RULLING

Introduction. These are the notes of a talk I gave in the Arithmetic Geometry
Seminar at the University of Essen on 10th of July 2008. The subject is the Eichler-
Shimura isomorphism for quaternionic automorphic forms after Saito (see [Sa06]).
We also used the lecture notes of van den Bogaart [Bo05] on the same subject as
well as the article [BaNe81].

The aim of these notes is to define quaternionic automorphic forms attached to a
quaternion algebra B, to interpret them as global sections of a certain locally free
sheaf on the Shimura curve M (C) defined by B and to show that these sections
together with their complex conjugates form the Hodge decomposition of a certain
local system on M (C). For the definition of M (C) see Stefan’s talk [Ku08|, for the
use of the Eichler-Shimura isomorphism see Garbor’s talk [Wi0§]|.

I am anything but a specialist in the field, therefore the reader should be aware
of mistakes or wrong statements I might give, which (if there are any) are of course
entirely due to me.

Quaternionic Automorphic Forms. For the rest of this notes we fix the following
notations.
e ['/Q is a totally real number field, [F : Q] = n, [ = {7,..., 7} =
Homg(F,R). We view F' C R via 7y, which is fixed. If n is even we fix
a finite place v of F.
e Ay are the finite adeles of Q.
e B is a quaternion algebra, which ramifies exactly at {72, ..., 7,,v} (i.e. B®p
F, is a division algebra for w € {7o,...,7,,v}). This property determines
B uniquely up to isomorphism.
e Let G := Resp/gB”™ be the Weil restriction of the algebraic group B* to
Q, in particular G(A) = (B ®qg A)*, for A a Q-algebra. We have

G(R) = Gla(R) x (H*)"!
and
G(R):+ = GL(R); x (H)"!, G(Q4 = G(Q NC(R),.
e S = Resc/r(Gmc)-

h:S(R)=C* - G(R), z=z+iy— h(z)= <<§ _xy> ,1...,1).
Denote X = {gh(—)g !|g € G(R)}. Then (see Stefan)
ai +b

X = p! PY(R h(=)g~! =
(CO)\P(R), gh(=)g "~ gi i d
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with g = <<‘CL Z) ,ag...an> € G(R).

e Let X' be the connected component of h, it is isomorphic to the Poincaré
upper half plane.
o Let k= (k1,...,kn, w) be a multi weight with w > k; > 2, k; = w mod 2.

n
=[x - D.
j=1
Set
Ve :i=C®2 ey:=(1,0),e; := (0,1) € V¥ = Home(Vg, C)
and
W,c:=Sym"2(VY), j=2,...,n, W :=Wiec...®c Wh.

Notice that {e*e]*> @ ... ® egrei™ |rj + 55 = kj — 2,2 < j < n} is a basis for W(.
(The choice of the strange notation will become apparent later. Finally it is done in
such a way, that it harmonizes with Saito’s definitions whose choice is dictated by
the wish to obtain a Hodge theoretic description of the quaternionic automorphic
forms we are going to define, with conventions as in [De79] and not as in [De71].)

Definition 1. (i) Amap f: X x G(Ay) — C", r > 1, is holomorphic if
f(—,9) : X — C" is holomorphic for each fixed g € G(Ay) and the map
G(Af) — H°(X,0%) = Hol(X,C") is locally constant.
(ii) We define an action of G(Q) on

Hol(X x G(Ay), Wk) 2 Hol(X x G(Ay), CT-D)

in the following way: Any element f € Hol(X x G(A¢), W() can uniquely
be written in the following form

(1) Flz.9) =D eel @ ... @ e €S frosy..rnsn (2, 9),

where the sum is over all tuples (72, s2,...7p,5,) with r; + 55 = k;j — 2.
Now take v € G(Q) € G(C) = Glp(C)! and view it as a tuple of invertible

matrices ¥ = (71,...,7n), with v = ¢ b). Then for f as in (1)) we define

d

w+ky;—2

_ dety; * 2 w—kj
@) 7-f(29) = T Hdet )T

2(6072) (61’72) ® ... @ (e0vn) " (€170)"" frasz..rnsn (112,79)-
(iii) We define a G(A f)-action on H(X,Ox ® W{) via

(3) f(z,9).9" == f(z,99), forze X, g9 €G(Af).

(iv) Let K C G(Ay) be open and compact. Then we say f € Hol(X xG(Ay), W()
is a quaternionic automorphic form of level K and weight k if

v.f(z,9) = f(z,9) Vye€GQ) and f(z,9).9 = f(z,9) V¢ €K.

We write QM I((k ) for the C-vector space of all quaternionic automorphic
forms of level K and weight k and QM *) = lim QMI(f)
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Shimura Curves. We recall the definition and some basic facts about Shimura

curves.

Zs(G) := Ker(Z(G) o Gm,g), where Z(G) = Resp/gGm,r is the center of
G and on the A-valued points (with A a Q-algebra ) Nm is given by the
usual norm Nm : (F ®g A)* — A*X. In particular Z,(G)(Q) = Ker(Nm :
F* — QX).

G¢:=G/Zs(G). Thus G°(Q) = F* /Ker(F* — Q*) = Q* which is discrete
in G°(Ay). G°(Q) = B*/Ker(Nm : F* — Q). Notice that G°(Q) has (as
G(Q)) no quasi-unipotent elements, since F' is totally real and B* is a
division algebra.

For K C G(Ay) open compact, we denote by K¢ its image in G°(Ay).

Definition 2. We say that an open compact subset K C G(Ay) is small enough if

and

__9Kg ' nG(Q)+
7T gKgtn Z(G4)(Q)

has no torsion Vg € G(Ay)

K°NZ(G)Q) = {1} (& KnZ(G)Q) = Z(G)(Q)).

We notice that K C G(Ay) small enough exist and we have

4) Ty

=gK°% ' NG(Q)y, VYgeG(Af)and K C G(Ay) small enough.

From now on K C G(Ayf) will always be an open compact subset, which is small

enough.

We recall some facts from Stefan’s notes [Ku0§]

The Shimura curve associated to (G, X, K) is defined by
Mg (C) := Mg (G, X) = G(Q) \ (X x G(Af)/K),
where the action of G(Q) on (X x G(Ay)/K) is the natural one.

My (C) = 11 r,\ X+
9eG(Q)+\G(Af)/K
The spaces Iy \ X are Riemann surfaces. Since I'y has no torsion, the

action of 'y on X is free. Hence X* — I'y \ X is the universal covering
and m(Fy \ XT) =T,.

e I';\ X7 is compact.
e The inclusions K’ C K give natural maps Mg/ (C) — Mg (C), which are

finite. We obtain a projective system (Mg (C)g) and the Shimura curve
associated to (G, X) is then defined by

M(C) := M(G, X) := lim M (C).
K

It is a scheme over C, with C-valued points given by

M(C) = G@Q) \ (X x G(Af)/2(G)(Q)),

where Z(G)(Q) is the closure of Z(G)(Q) in Z(Af)(Q) (see [Mi90]). We
denote by M the canonical model over F' (see [De79], [Mi90].)
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Remark 3 (see [BaNe81]). Recall that for a ringed topological space (Y, Oy), on
which a group I' acts from the left, and F an Oy-sheaf on Y, one says that I acts
on F or F is a -sheaf if for all v € T one has an isomorphism F = ~,F, which
is compatible with the group structure. If F is I'-sheaf one obtains a sheaf on the
quotient T'\ Y by taking I'-invariants, F*. More concretely if 7 : Y — I'\ Y is the
quotient map, then F' is defined as follows

T\Y DU~ F(r Y (U)'.
If I acts freely on Y, then
(}—F)ﬂ(y) = Fy.
In particular F' is locally free and of finite rank if F is. Furthermore if I acts freely
on Y and F and G are locally free sheaves of finite rank on Y, then
(F®oy §)F =F @op, G, (Symp, F)' = (Symp, , F').
The Eichler-Shimura Isomorphism. We give a description of quaternionic au-

tomorphic forms as sections of certain locally free sheaves on M(C) and show that

QM™® @ QM®) is the Hodge decomposition of a certain local system on M(C). In
fact there is a way to make sense of this even over the completion at some prime of
a certain number field containing F'. We give some hints towards this, see [Sa06] for
details.

For the rest of this notes we fix a finite Galois extension L/F', which splits B, i.e.
B®p L = My(L)!. In particular G, = GliL as algebraic groups.
We set

V:=L% ¢y:=(1,0),e;:=(0,1) € V¥V = Homp(V, L).

Write Pt = ProjClzg, 1] and z = 22 in any neighborhood with z1 # 0. Gl(C)
acts on OJP% via

(5) g-f(zo, 1) = flaxo + bxy,cxo+dry), g= (CCL Z) € Gly(C).

Notice that the center of Gla(C) acts trivially. We obtain an action Gla(C) —
Autc(Op1 @¢ VVY) via

(6) 9.(f®ej) =9.f ®ejg, j=0,1
We have the following exact sequence of Opi-modules
(7) 0— Op1(—1) = Op1 @c VY — Op1(1) — 0,

where the map on the left is given by ¢ — ¢(x1) ® eg — ¢(x0) ® e; and the map on
the right by 1 ® e; — x;. In any neighborhood U with z1 # 0 we can identify

(8) Oy(=1) = Oy - (eg — ze1) C Opr @ VY.

With respect to the action defined in @ eop — ze1 behaves as follows (g = (z Z))
det g

(9) g-(e0 — ze1) = (eog — (92)erg) = ———1(e0 — ze1).

Set

(10) W, = Sym” 2(VY), W:=W1®...@ W,
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Notice that {e('e]* @ ... @egrei™ |rj+s; =k; —2,1 < j <n} is a basis for W.

Definition 4. We define a G -representation

(11) pM - Gf — GUW)
in the following way: compose the isomorphism
(12) Gr =2 GI(V)!
with

w—k;
M=) (Symki? ® det2j> opr; : GUV) — GIW),
J€eI
where pr; is the contragredient representation of the j-th projection GI(V) —
GI(V). Explicitely:

(13) 5®g= (g1, 9n))(ep'el @ ... @ epre) =

w—k;

n
[T det(g;) =" | (eogr ) (e197")* @ ... ® (eogy )™ (ergn )™
=1

Notice that composed with %) restricted to Z(Gr) C G, acts as Nm;%_2)

and hence this operation factors to give .
Definition 5. Set
Wpy = Opr ®c W = Sym¢! (Ops @c V) @ Wac ® ... @ Wae.
We define the following action
R™ . G¢ — AutC(WPé)
as the composition of G¢ 2 Gly(C)! with
R™: Gly(C)" — Aute(Wp)

given by

RW(g = (g1, -, 9))(f ©w) == (g7 ) @ 5V (9) (w),
where g;'.f is defined in and ) (g)(w) is defined above. This composition
factors to give R(*).

Definition 6. Set « := “’_2’“1. The exact sequence defines a filtration

_ a a+1 a+k1—2
Wpé_FPéDF]P’é 3...3F]P% D0

with
(14) F[;”é“’ = Opy (—1)% - Sym" 2P (V) @ Woc © ... @ Wac
and
FotP
(15) Faﬂfiicp+1 = Op1 (-1)*? © Op1 (1) 2 P(V) @ Wac © ... @ Wy
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Definition 7. e For K C G(Ay) small enough and g € G(Ay) define
k
Wl(“g)(K) = (Wpl(C)|X+)Fg(K) on I'y(K) \X+7

where I'g(K) acts via

(k)
Iy(K) € G*(Q)+ € GY(C) ™ Aute (W ).

e Define " "

k . k

W T el
9eG(Q+\G(Af)+/K
where jg : I'y(K) \ X+ < Mg(C) is the natural inclusion.

e Define

W) — h_n}mg}lwg),
K
where 7 : M(C) — Mg(C) is the projection.
e Define a G(A)-action on W*) in the following way: For a € G(Ay) we
have I'y(K) = I'yo(a"'Ka). Thus

Ty(K)\ X" = Tga(a Ka)\ X and W, =Wl

o(a=1Ka)"
This induces the G(Ay)-action (a sends an element from WI(JZ)( K Via the

(k)

second isomorphism to an element in Wl“ga (a1 Ka).)
e In the same way the trivial connection

S ® ) ¢ o
d: Wy — Wy © Oy

descends to give connections

Vr, W s wi e al |,

9 g

and
This last connection being compatible with the G(A f)-action.
e In the same way the filtration F,, C Wﬁ(,,lf) descends to give filtrations
C C

W =R 5. o R o,

W — Fg o o Fath2 5
and
Wk = po 5 o pethi=2 5,
This last being compatible with the G(A f)-action.
The last part of the filtration becomes an extra name:
r
Vﬁ’z) = Fothi—2 _ (((’)X+(eo —261))*M 2 @c W ®...® Wn,@) .

V}?) = Fa+k1_2, V(k) = FOH_kl_Q.
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e Considering W as a constant sheaf on IP’}C we define

k Lg
Pé,%g = (WPI((C)|X+> )

where I'y acts via
(k)
T, C G°(Q)y C GY(L) "= GI(W).
In the same way as above we obtain P}Jk}( and Pék). We set
P((Ck) = ék) ®r C, etc.
Proposition 8. Take K C G(Ay) small enough and I'y = I'y(K).
(i) The sheaves ng:])’ ngp, p=0,...,k1 —2, are locally free on T'y\ X4 and
P(L]f%g s a local system.
(i)
P = W)Y = Ker(v: WH — wh @ al, ),
in particular P(ék) ®@c Oy = wk) .
(iii) P}f%q is the local system attached to the (monodromy) representation
71T, \ X4) =Ty € GHQ)4 — G4(L) — GI(W).
(iv) For all primes X\ € L there exists a lisse Ly-sheaf P/(\’fkét (with Ly being the
X-adic completion of L) on the étale side (M c)er such that
k an k
(Prk.a)™ = Phk ©r L.

Proof. (i) follows because I'y acts freely on X ( see Remark [3). For (i) and (iii)
just unravel the definitions. Finally the representation in (iii) is continuous in the
A-adic topology on the right and the profinite topology on the left. Hence we can
complete both sides in the respective topology to obtain a representation

m(Lg \ Xy )ee = m(Ig \ Xy) — GUW &L L))
and this gives the desired lisse sheaf (see SGA 5 VI 1). O

Theorem 9. The lisse sheaves Pf\kl)( live already on (My)e for all X and W),
FotP and in particular VE) live already on Mspec .-

Proof. For the second part see [Mi90] . For the first part assume A is a prime over .

)

Then 73)(\{6}{ being a lisse sheaf means for all n there is a projective system of locally
constant Z/I"-sheaves Pr(lkl)( on (Mg c)st such that P)(\kl)( = mn Pflkl)( ®z, L. Since
Pék[)( is locally constant it is already defined over (Mg )gt. O

Proposition 10. Denote by Ex the sheaf of C-valued C*°-functions on M (C). A
subscript (—)g, will mean ®o,, - €x- Then

o VFL C P @9 (o)
k k . k ~ 1
¢ Wk =@y rgw o WP, with WE W = F . AF . = FP /FE

K
In particular (Wl(f))p’q =01ifp# oo+ k1 — 2.
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Proof. Tt is enough to prove the statement on P!(C) and since the filtration only
affects the first factor in
Wpt = Sym€1_2<0p1 ® V(\:/) QWac®...0 Wy,
it is enough to prove the corresponding statement for W' := Symfg_Q(Op ® VY).
Then by
FPHIOW') = (eg — zey )P - SymM =27P(Op1 @ V).
Now take f = (eg — ze1)Pv € FO*TP(W'). Then
(16) Vf=—pleo — ze1)P terv @ dz + (eg — ze1)PVo € F*P"HW') @ Q.

This gives (i). For (ii) notice that (eg — ze1) and (eg — Zep) is a basis for Ep @ VY.
Thus

(17) (eg — ze1)" (eo — ze1)®, withr >pand r+s=k; —2
is a basis for F*tP(W'). Hence for a+p+a+q=w—2,i.e. p+q = k1 —2 we have
Fg}:{p N Fg}:{q = (eg — ze1)P(eg — ze1)1Epr.
This gives
W' = @a+p+a+q:w—2Fg§p N F%Tq-

The isomorphism F2 TP 0 FaHe =~ potp /F, otPHL s clear. (]
Ep Ep Ea Men

We still have G¢(C) acting on ngz) for all T'y. An element

Y=,y ) € GIR); = Gla(R)4 x H* x ... x H*
defines a point P, € X. If we identify X with the upper half plane, then
P,Y:'yl.izw, Y = <a b).
ca+d c d
In this case denote by ]54/ the image of P, in I'y \ X,. If we identify X with
{gh(=)g~" | g € G(R)+}, then
P, = hy :=~vh(=)y" ' : S(R) — G(R).

; : (k) _wk) P\ i
We obtain an action of S(R) on the fiber Wrg,(f%) =Wr, ®op, k(Py) via
(k) h ¢ Ry (k)
(18) & = R(pv) onatoh,: C* =S(R) = G(R) = G°(C) — AUt(WF,(PW))’

where nat denotes the natural map.

Proposition 11. Denote
11
Wyt :={weWr, p)l&(2)(w) = Z—pgw,Vz e C*}.

Then 1
P p+ : o
WPl = FFQ?(PW)/Fng(p“/) pr+q =w-—2
! 0 else.

In particular W =0 if p & o, + k1 — 2] and W’?Jrkl_za = Vf“?(ﬁw)'
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Proof. Tt is enough to prove the corresponding statement on P!(C). We have

W[S?((CLP o~ W(C — WLC ®...x Wn,(C'

By definition of i, S(R) acts non-trivially only on Wy ¢ = Sym" (V). Thus it is
enough to prove the corresponding statement for W' := Sym"ﬂ*?((g‘ﬁ,,1 ® V(CV ) and to
assume y = 1. Set
€0,y = (€0 — iel)’Y_l; e1y = (eo + iel)'y_l.
Then for z =z + 1y
_ . x
eo,y(vh(z)’y 1) = (60 — 7,61) (_y Z) = 260,’)/
and
61,7(’7}1(2)771) = z€1,.
Thus forr+s=%k — 2

(19) ER)(ehqely) = (det(hy(2)) ™) (el (2) ) (1504 (2) )
1 1 T S

(20) T ez €01
1 1,

(21) T rta zsta €0,7€1,7:

This shows W3 is spanned by ef _“ef * if p+¢ =w —2 and p € [a,a + ki — 2]
and is 0 else. On the other hand F} is spanned by (see (17))
(eg — ze1) (o — ze1)®, withr >pandr+s=k —2.
Now the statement follows since in the fiber P, the vectors
(eo — ze1)(p,y = (eo — (v-i)e1) and (eg — Ze1)(p,y = (o + (7.i)e1)
are multiples of eg , and ey 4 respectively, by @D O
Recall the following definition.

Definition 12. Let P be a local system of R-vector spaces on a smooth projective
manifold S. A wvariation of Hodge structures (VHS) of weight k on P is a filtration

PorOgD...OFP > FP~ 1o |

such that

(i) VF? C FP1 @ Qf, where V: P ® Og — P ® Qf is the connection defined
by the local system. o
(ii) P Qr Es = Bptq=kEP1(P), with EPI(P) := FfNFd, p+q=k.

A VHS of weight k is thus a Hodge structure of weight & in each fiber P(,), s € S,
varying holomorphically.
There is also the notion of a polarization of a VHS on P, which we omit.

Theorem 13 (Deligne, see [Zu79] Thm (2.9)). Let P be a VHS of weight k as above,
which admits a polarization. Then H'(S,Pc) is a Hodge structure of weight k + i
and there is a canonical decomposition

H(S,Pc) = ®prq=i H'TU(S, Gr1.Q5(P)).
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Remark 14. Proposition shows that szc is almost a VHS. The only missing

thing is that Pl(?zc has no underlying local system of R-vector spaces, since L is not

(k)

real. We can fix this problem by simply considering P - as R-vector spaces, i.e. let

o : SpecC — SpecR be the natural map and consider U*P[((I?C. Then

k ~ k k k

0uPice O Orrie(©) = Wik © Wie = Witp ®= C,

where we view W, and W, c P® oc € This d ition is induced
K.C K.C k.c ®c Eng(c)- This decomposition is induce

by
C @R Onge) = Onge) © Oumge) CEmx)yy, (I+9)@f+(1-i)@g~ (f,9)
We obtain a filtration

Fily := F} @z C = F§ & Fi on 0, Py 1 @& Opre(©),
which satisfies the analog statements of the Propositions and Thus 0*73;?2(:
is a VHS of weight w — 2. It follows from Proposition that this VHS coincides
with the one coming from the machinery of Shimura varieties (see [De79], [Mi90]).
We use as a black box that there exists also a polarization of this VHS (see [De79],
[Mi90]). (Probably one can describe this very concretely as in [BaNe&1].)

Theorem 15 ([Sa06], Proof of Lemma 1). There is a canonical isomorphism of
C[G(Ay)]-modules
H'(M(C)),PW) = Qu® & QM®)

o HO(M((C),V(k) ® lew((c)) © HO(M(C), V) @ Q}M(C))'

Proof. One easily checks QM®*) = HO(M(C), V¥ @ Q). Further by Theorem
and Remark we have a canonical decomposition (in particular compatible with
the G(A)-action)

H'(M(C),0.PW @g C) = @yt H(M(C), Gy @ (0. PW)).
On the other hand
HY(M(C),0,P% @ C) = H'(M(C),P®)) @ H'(M(C), P®)

and

HPTI(M(C), G2, (0, PH)))
=~ {PH(M(C), Grh. (PW)) @ Hr+a(M(C), Grh.Q-(P®)).

The Theorem now follows from the following Lemma: O

Lemma 16.

HO(M(C), V¥ Q') ifpe{a,a+k —1}
0 else.

H'(M(C), Gripr (PW)) = {
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Proof. The filtration on Q(P®*)) looks as follows:

Q-(p(k)) . (k) v . WE @, 01
[ [ I
FaQ(fP(k)) . e v s pra—1 R0 Ol
J 7oL
Fa+1Q.(fP(k)) . FaJrl —f s Fpa R0 Ql

J ]

Fa+k1—QQ~(7D(k)) . fatki—2 AN Fotki=3 g, 0L
J -
Fothi=lo-(pk))y ; 0 ———— Fothi—2 @, Q!
I ] ]
Fothkig(pk)y 0 0.

It follows that Grf.(Q(P®)) = 0 for p < @ and p > a + k1 — 1. Now assume
a<p<a+k —1. Then

Grth. v : FP/FPHt — PPl /P g
is an isomorphism. Indeed it is enough to check this on P!(C) and then it follows

from that Gr?(V) is given by (eg — zeq)Pv — —p(ep — zezl’fl)elv ® dz mod FP,
which is an isomorphism. Thus

HY(M(C),Grh (v (PP) =0 fora<p<a+k —1.
If p=a+k —1, then
Grb (0 (P®)) = (0 — V¥ o QY
and hence
HY(M(C),GrgH =M (PW))) = HO(M(C,yW) @ Q).
Finally for p = o we have
Cri(Q (PW)) = (F*/F**! — 0)
and it follows from that Fo/Fotl = (PE)Y, Thus
H'(M(C), Grip (e (PW))) = 1! (M(C), V) = HO(M(C), V®) & )

the last isomorphism being Serre duality, which is also compatible with the G(Af)-
action. This proves the Lemma and hence the Theorem.
O

Remark 17. Going attentively through the proof one sees that we obtain in fact

HOM(C),Vv® @ QY ) = HO(M(C), VP @ QF,

©)
and one can check that the isomorphism from Theorem [15]is induced by tensoring
the following isomorphism with ®r, C

(M, PP = (HO(Mp, VP @ QY ) @1 1),
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where A is any prime in L and Pf\k) and ngk) are the sheaves given by Theorem |§|7
see [Sa06], Proof of Lemma 1] for details.
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