SHIMURA CURVES III

KAY RÜLLING

Introduction. These are the notes of a talk I gave in the Arithmetic Geometry Seminar at the University of Essen on 10th of July 2008. The subject is the EichlerShimura isomorphism for quaternionic automorphic forms after Saito (see [Sa06]). We also used the lecture notes of van den Bogaart [Bo05] on the same subject as well as the article [BaNe81].

The aim of these notes is to define quaternionic automorphic forms attached to a quaternion algebra B, to interpret them as global sections of a certain locally free sheaf on the Shimura curve $M(\mathbb{C})$ defined by B and to show that these sections together with their complex conjugates form the Hodge decomposition of a certain local system on $M(\mathbb{C})$. For the definition of $M(\mathbb{C})$ see Stefan's talk Ku08, for the use of the Eichler-Shimura isomorphism see Garbor's talk Wi08.

I am anything but a specialist in the field, therefore the reader should be aware of mistakes or wrong statements I might give, which (if there are any) are of course entirely due to me.

Quaternionic Automorphic Forms. For the rest of this notes we fix the following notations.

- F / \mathbb{Q} is a totally real number field, $[F: \mathbb{Q}]=n, I=\left\{\tau_{1}, \ldots, \tau_{n}\right\}=$ $\operatorname{Hom}_{\mathbb{Q}}(F, \mathbb{R})$. We view $F \subset \mathbb{R}$ via τ_{1}, which is fixed. If n is even we fix a finite place v of F.
- \mathbb{A}_{f} are the finite adèles of \mathbb{Q}.
- B is a quaternion algebra, which ramifies exactly at $\left\{\tau_{2}, \ldots, \tau_{n}, v\right\}$ (i.e. $B \otimes_{F}$ F_{w} is a division algebra for $w \in\left\{\tau_{2}, \ldots, \tau_{n}, v\right\}$). This property determines B uniquely up to isomorphism.
- Let $G:=\operatorname{Res}_{F / \mathbb{Q}} B^{\times}$be the Weil restriction of the algebraic group B^{\times}to \mathbb{Q}, in particular $G(A)=\left(B \otimes_{\mathbb{Q}} A\right)^{\times}$, for A a \mathbb{Q}-algebra. We have

$$
G(\mathbb{R})=\mathrm{Gl}_{2}(\mathbb{R}) \times\left(\mathbb{H}^{\times}\right)^{n-1}
$$

and

$$
G(\mathbb{R})_{+}=G l_{2}(\mathbb{R})_{+} \times\left(\mathbb{H}^{\times}\right)^{n-1}, \quad G(\mathbb{Q})_{+}=G(\mathbb{Q}) \cap G(\mathbb{R})_{+} .
$$

- $\mathbb{S}=\operatorname{Res}_{\mathbb{C} / \mathbb{R}}\left(\mathbb{G}_{m \mathbb{C}}\right)$.

$$
h: \mathbb{S}(R)=\mathbb{C}^{\times} \rightarrow \mathbb{G}(\mathbb{R}), \quad z=x+i y \mapsto h(z)=\left(\left(\begin{array}{cc}
x & -y \\
y & x
\end{array}\right), 1 \ldots, 1\right) .
$$

Denote $X=\left\{g h(-) g^{-1} \mid g \in G(\mathbb{R})\right\}$. Then (see Stefan)

$$
X \xrightarrow{\simeq} \mathbb{P}^{1}(\mathbb{C}) \backslash \mathbb{P}^{1}(\mathbb{R}), \quad \begin{aligned}
& g h(-) g^{-1} \mapsto g i=\frac{a i+b}{c i+d}, \\
& 1
\end{aligned}
$$

with $g=\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), a_{2} \ldots a_{n}\right) \in G(\mathbb{R})$.

- Let X^{+}be the connected component of h, it is isomorphic to the Poincaré upper half plane.
- Let $k=\left(k_{1}, \ldots, k_{n}, w\right)$ be a multi weight with $w \geq k_{j} \geq 2, k_{j} \equiv w \bmod 2$.

$$
m:=\prod_{j=1}^{n}\left(k_{j}-1\right) .
$$

Set

$$
V_{\mathbb{C}}:=\mathbb{C}^{\oplus 2}, \quad e_{0}:=(1,0), e_{1}:=(0,1) \in V_{\mathbb{C}}^{\vee}=\operatorname{Hom}_{\mathbb{C}}\left(V_{\mathbb{C}}, \mathbb{C}\right)
$$

and

$$
W_{j, \mathbb{C}}:=\operatorname{Sym}^{k_{j}-2}\left(V_{\mathbb{C}}^{\vee}\right), \quad j=2, \ldots, n, \quad W^{\prime}:=W_{2} \otimes_{\mathbb{C}} \ldots \otimes_{\mathbb{C}} W_{n} .
$$

Notice that $\left\{e_{0}^{r_{2}} e_{1}^{s_{2}} \otimes \ldots \otimes e_{0}^{r_{n}} e_{1}^{s_{n}} \mid r_{j}+s_{j}=k_{j}-2,2 \leq j \leq n\right\}$ is a basis for $W_{\mathbb{C}}^{\prime}$. (The choice of the strange notation will become apparent later. Finally it is done in such a way, that it harmonizes with Saito's definitions whose choice is dictated by the wish to obtain a Hodge theoretic description of the quaternionic automorphic forms we are going to define, with conventions as in [De79] and not as in [De71].)
Definition 1. (i) A map $f: X \times G\left(\mathbb{A}_{f}\right) \rightarrow \mathbb{C}^{r}, r \geq 1$, is holomorphic if $f(-, g): X \rightarrow \mathbb{C}^{r}$ is holomorphic for each fixed $g \in G\left(\mathbb{A}_{f}\right)$ and the map $G\left(\mathbb{A}_{f}\right) \rightarrow H^{0}\left(X, \mathcal{O}_{X}^{r}\right)=\operatorname{Hol}\left(X, \mathbb{C}^{r}\right)$ is locally constant.
(ii) We define an action of $G(\mathbb{Q})$ on

$$
\operatorname{Hol}\left(X \times G\left(\mathbb{A}_{f}\right), W_{\mathbb{C}}^{\prime}\right) \cong \operatorname{Hol}\left(X \times G\left(\mathbb{A}_{f}\right), \mathbb{C}^{\frac{m}{\left(k_{1}-1\right)}}\right)
$$

in the following way: Any element $f \in \operatorname{Hol}\left(X \times G\left(\mathbb{A}_{f}\right), W_{\mathbb{C}}^{\prime}\right)$ can uniquely be written in the following form

$$
\begin{equation*}
f(z, g)=\sum e_{0}^{r_{2}} e_{1}^{s_{2}} \otimes \ldots \otimes e_{0}^{r_{n}} e_{1}^{s_{n}} f_{r_{2} s_{2} \ldots r_{n} s_{n}}(z, g), \tag{1}
\end{equation*}
$$

where the sum is over all tuples $\left(r_{2}, s_{2}, \ldots r_{n}, s_{n}\right)$ with $r_{j}+s_{j}=k_{j}-2$. Now take $\gamma \in G(\mathbb{Q}) \subset G(\mathbb{C}) \cong \mathrm{Gl}_{2}(\mathbb{C})^{I}$ and view it as a tuple of invertible matrices $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$, with $\gamma_{1}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Then for f as in (11) we define
(2) $\gamma \cdot f(z, g):=\frac{\operatorname{det} \gamma_{1}^{\frac{w+k_{1}-2}{2}}}{(c z+d)^{k_{1}}} \prod_{j=2}^{n} \operatorname{det}\left(\gamma_{j}\right)^{\frac{w-k_{j}}{2}}$.

$$
\sum\left(e_{0} \gamma_{2}\right)^{r_{2}}\left(e_{1} \gamma_{2}\right)^{s_{2}} \otimes \ldots \otimes\left(e_{0} \gamma_{n}\right)^{r_{n}}\left(e_{1} \gamma_{n}\right)^{s_{n}} f_{r_{2} s_{2} \ldots r_{n} s_{n}}\left(\gamma_{1} z, \gamma g\right) .
$$

(iii) We define a $G\left(\mathbb{A}_{f}\right)$-action on $H^{0}\left(X, \mathcal{O}_{X} \otimes W_{\mathbb{C}}^{\prime}\right)$ via

$$
\begin{equation*}
f(z, g) \cdot g^{\prime}:=f\left(z, g g^{\prime}\right), \quad \text { for } z \in X, g, g^{\prime} \in G\left(\mathbb{A}_{f}\right) . \tag{3}
\end{equation*}
$$

(iv) Let $K \subset G\left(\mathbb{A}_{f}\right)$ be open and compact. Then we say $f \in \operatorname{Hol}\left(X \times G\left(\mathbb{A}_{f}\right)\right.$, $\left.W_{\mathbb{C}}^{\prime}\right)$ is a quaternionic automorphic form of level K and weight k if $\gamma \cdot f(z, g)=f(z, g) \quad \forall \gamma \in G(\mathbb{Q}) \quad$ and $\quad f(z, g) \cdot g^{\prime}=f(z, g) \quad \forall g^{\prime} \in K$.
We write $Q M_{K}^{(k)}$ for the \mathbb{C}-vector space of all quaternionic automorphic forms of level K and weight k and $Q M^{(k)}={\underset{\longrightarrow}{l}}_{K} Q M_{K}^{(k)}$.

Shimura Curves. We recall the definition and some basic facts about Shimura curves.

- $Z_{s}(G):=\operatorname{Ker}\left(Z(G) \xrightarrow{N m} \mathbb{G}_{m, \mathbb{Q}}\right)$, where $Z(G)=\operatorname{Res}_{F / \mathbb{Q}} \mathbb{G}_{m, F}$ is the center of G and on the A-valued points (with A a \mathbb{Q}-algebra) Nm is given by the usual norm $\mathrm{Nm}:\left(F \otimes_{\mathbb{Q}} A\right)^{\times} \rightarrow A^{\times}$. In particular $Z_{s}(G)(\mathbb{Q})=\operatorname{Ker}(\mathrm{Nm}$: $\left.F^{\times} \rightarrow \mathbb{Q}^{\times}\right)$.
- $G^{c}:=G / Z_{s}(G)$. Thus $G^{c}(\mathbb{Q})=F^{\times} / \operatorname{Ker}\left(F^{\times} \rightarrow \mathbb{Q}^{\times}\right) \cong \mathbb{Q}^{\times}$which is discrete in $G^{c}\left(\mathbb{A}_{f}\right) . G^{c}(\mathbb{Q})=B^{\times} / \operatorname{Ker}\left(\mathrm{Nm}: F^{\times} \rightarrow \mathbb{Q}^{\times}\right)$. Notice that $G^{c}(\mathbb{Q})$ has (as $G(\mathbb{Q})$) no quasi-unipotent elements, since F is totally real and B^{\times}is a division algebra.
- For $K \subset G\left(\mathbb{A}_{f}\right)$ open compact, we denote by K^{c} its image in $G^{c}\left(\mathbb{A}_{f}\right)$.

Definition 2. We say that an open compact subset $K \subset G\left(\mathbb{A}_{f}\right)$ is small enough if

$$
\Gamma_{g}:=\frac{g K g^{-1} \cap G(\mathbb{Q})_{+}}{g K g^{-1} \cap Z\left(G_{+}\right)(\mathbb{Q})} \text { has no torsion } \forall g \in G\left(\mathbb{A}_{f}\right)
$$

and

$$
K^{c} \cap Z\left(G^{c}\right)(\mathbb{Q})=\{1\} \quad\left(\Leftrightarrow K \cap Z(G)(\mathbb{Q})=Z_{s}(G)(\mathbb{Q})\right) .
$$

We notice that $K \subset G\left(\mathbb{A}_{f}\right)$ small enough exist and we have

$$
\begin{equation*}
\Gamma_{g}=g K^{c} g^{-1} \cap G^{c}(\mathbb{Q})_{+}, \quad \forall g \in G\left(\mathbb{A}_{f}\right) \text { and } K \subset G\left(\mathbb{A}_{f}\right) \text { small enough. } \tag{4}
\end{equation*}
$$

From now on $K \subset G\left(\mathbb{A}_{f}\right)$ will always be an open compact subset, which is small enough.

We recall some facts from Stefan's notes Ku08

- The Shimura curve associated to (G, X, K) is defined by

$$
M_{K}(\mathbb{C}):=M_{K}(G, X):=G(\mathbb{Q}) \backslash\left(X \times G\left(\mathbb{A}_{f}\right) / K\right),
$$

where the action of $G(\mathbb{Q})$ on $\left(X \times G\left(\mathbb{A}_{f}\right) / K\right)$ is the natural one.

$$
M_{K}(\mathbb{C}) \cong \coprod_{g \in G(\mathbb{Q})_{+} \backslash G\left(\mathbb{A}_{f}\right) / K} \Gamma_{g} \backslash X^{+} .
$$

- The spaces $\Gamma_{g} \backslash X^{+}$are Riemann surfaces. Since Γ_{g} has no torsion, the action of Γ_{g} on X^{+}is free. Hence $X^{+} \rightarrow \Gamma_{g} \backslash X^{+}$is the universal covering and $\pi_{1}\left(\Gamma_{g} \backslash X^{+}\right)=\Gamma_{g}$.
- $\Gamma_{g} \backslash X^{+}$is compact.
- The inclusions $K^{\prime} \subset K$ give natural maps $M_{K^{\prime}}(\mathbb{C}) \rightarrow M_{K}(\mathbb{C})$, which are finite. We obtain a projective system $\left(M_{K}(\mathbb{C})_{K}\right)$ and the Shimura curve associated to (G, X) is then defined by

$$
M(\mathbb{C}):=M(G, X):={\underset{K}{K}}_{\lim _{K}} M_{K}(\mathbb{C}) .
$$

It is a scheme over \mathbb{C}, with \mathbb{C}-valued points given by

$$
M(\mathbb{C})=G(\mathbb{Q}) \backslash\left(X \times G\left(\mathbb{A}_{f}\right) / \overline{Z(G)(\mathbb{Q})}\right),
$$

where $\overline{Z(G)(\mathbb{Q})}$ is the closure of $Z(G)(\mathbb{Q})$ in $Z\left(\mathbb{A}_{f}\right)(\mathbb{Q})$ (see Mi90). We denote by M the canonical model over F (see [De79, (Mi90].)

Remark 3 (see [BaNe81]). Recall that for a ringed topological space $\left(Y, \mathcal{O}_{Y}\right)$, on
 on \mathcal{F} or \mathcal{F} is a Γ-sheaf if for all $\gamma \in \Gamma$ one has an isomorphism $\mathcal{F} \xlongequal{\leftrightharpoons} \gamma_{*} \mathcal{F}$, which is compatible with the group structure. If \mathcal{F} is Γ-sheaf one obtains a sheaf on the quotient $\Gamma \backslash Y$ by taking Γ-invariants, \mathcal{F}^{Γ}. More concretely if $\pi: Y \rightarrow \Gamma \backslash Y$ is the quotient map, then \mathcal{F}^{Γ} is defined as follows

$$
\Gamma \backslash Y \supset U \mapsto \mathcal{F}\left(\pi^{-1}(U)\right)^{\Gamma} .
$$

If Γ acts freely on Y, then

$$
\left(\mathcal{F}^{\Gamma}\right)_{\pi(y)}=\mathcal{F}_{y} .
$$

In particular \mathcal{F}^{Γ} is locally free and of finite rank if \mathcal{F} is. Furthermore if Γ acts freely on Y and \mathcal{F} and \mathcal{G} are locally free sheaves of finite rank on Y, then

$$
\left(\mathcal{F} \otimes_{\mathcal{O}_{Y}} \mathcal{G}\right)^{\Gamma}=\mathcal{F}^{\Gamma} \otimes_{\mathcal{O}_{\Gamma \backslash Y}} \mathcal{G}^{\Gamma}, \quad\left(\operatorname{Sym}_{\mathcal{O}_{Y}}^{n} \mathcal{F}\right)^{\Gamma}=\left(\operatorname{Sym}_{\mathcal{O}_{\Gamma \backslash Y}} \mathcal{F}^{\Gamma}\right) .
$$

The Eichler-Shimura Isomorphism. We give a description of quaternionic automorphic forms as sections of certain locally free sheaves on $M(\mathbb{C})$ and show that $Q M^{(k)} \oplus \overline{Q M^{(k)}}$ is the Hodge decomposition of a certain local system on $M(\mathbb{C})$. In fact there is a way to make sense of this even over the completion at some prime of a certain number field containing F. We give some hints towards this, see Sa06 for details.

For the rest of this notes we fix a finite Galois extension L / F, which splits B, i.e. $B \otimes_{F} L \cong M_{2}(L)^{I}$. In particular $G_{L} \cong G l_{2, L}^{I}$ as algebraic groups.

We set

$$
V:=L^{\oplus 2}, \quad e_{0}:=(1,0), e_{1}:=(0,1) \in V^{\vee}=\operatorname{Hom}_{L}(V, L) .
$$

Write $\mathbb{P}_{\mathbb{C}}^{1}=\operatorname{Proj} \mathbb{C}\left[x_{0}, x_{1}\right]$ and $z=\frac{x_{0}}{x_{1}}$ in any neighborhood with $x_{1} \neq 0 . G l_{2}(\mathbb{C})$ acts on $\mathcal{O}_{\mathbb{P}_{\mathbb{C}}^{1}}$ via

$$
g . f\left(x_{0}, x_{1}\right)=f\left(a x_{0}+b x_{1}, c x_{0}+d x_{1}\right), \quad g=\left(\begin{array}{ll}
a & b \tag{5}\\
c & d
\end{array}\right) \in G l_{2}(\mathbb{C}) .
$$

Notice that the center of $G l_{2}(\mathbb{C})$ acts trivially. We obtain an action $G l_{2}(\mathbb{C}) \rightarrow$ Aut $_{\mathbb{C}}\left(\mathcal{O}_{\mathbb{P}^{1}} \otimes_{\mathbb{C}} V^{\vee}\right)$ via

$$
\begin{equation*}
g \cdot\left(f \otimes e_{j}\right)=g \cdot f \otimes e_{j} g, \quad j=0,1 . \tag{6}
\end{equation*}
$$

We have the following exact sequence of $\mathcal{O}_{\mathbb{P}^{1}}$-modules

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{\mathbb{P}^{1}}(-1) \rightarrow \mathcal{O}_{\mathbb{P}^{1}} \otimes_{\mathbb{C}} V^{\vee} \rightarrow \mathcal{O}_{\mathbb{P}^{1}}(1) \rightarrow 0 \tag{7}
\end{equation*}
$$

where the map on the left is given by $\varphi \mapsto \varphi\left(x_{1}\right) \otimes e_{0}-\varphi\left(x_{0}\right) \otimes e_{1}$ and the map on the right by $1 \otimes e_{j} \mapsto x_{j}$. In any neighborhood U with $x_{1} \neq 0$ we can identify

$$
\begin{equation*}
\mathcal{O}_{U}(-1)=\mathcal{O}_{U} \cdot\left(e_{0}-z e_{1}\right) \subset \mathcal{O}_{\mathbb{P}^{1}} \otimes V^{\vee} \tag{8}
\end{equation*}
$$

With respect to the action defined in (6) $e_{0}-z e_{1}$ behaves as follows $\left(g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right.$)

$$
\begin{equation*}
g \cdot\left(e_{0}-z e_{1}\right)=\left(e_{0} g-(g z) e_{1} g\right)=\frac{\operatorname{det} g}{c z+d}\left(e_{0}-z e_{1}\right) . \tag{9}
\end{equation*}
$$

Set

$$
\begin{equation*}
W_{j}:=\operatorname{Sym}_{l}^{k_{j}-2}\left(V^{\vee}\right), \quad W:=W_{1} \otimes \ldots \otimes W_{n} . \tag{10}
\end{equation*}
$$

Notice that $\left\{e_{0}^{r_{1}} e_{1}^{s_{1}} \otimes \ldots \otimes e_{0}^{r_{n}} e_{1}^{s_{n}} \mid r_{j}+s_{j}=k_{j}-2,1 \leq j \leq n\right\}$ is a basis for W.
Definition 4. We define a G_{L}^{c}-representation

$$
\begin{equation*}
\rho^{(k)}: G_{L}^{c} \longrightarrow G l(W) \tag{11}
\end{equation*}
$$

in the following way: compose the isomorphism

$$
\begin{equation*}
G_{L} \cong G l(V)^{I} \tag{12}
\end{equation*}
$$

with

$$
\tilde{\rho}^{(k)}:=\bigotimes_{j \in I}\left(\operatorname{Sym}^{k_{j}-2} \otimes \operatorname{det}^{\frac{w-k_{j}}{2}}\right) \circ \check{\operatorname{pr}}_{j}: G l(V)^{I} \rightarrow G l(W)
$$

where $\check{\mathrm{pr}}_{j}$ is the contragredient representation of the j-th projection $G l(V)^{I} \rightarrow$ $G l(V)$. Explicitely:
(13) $\quad \tilde{\rho}^{(k)}\left(g=\left(g_{1}, \ldots, g_{n}\right)\right)\left(e_{0}^{r_{1}} e_{1}^{s_{1}} \otimes \ldots \otimes e_{0}^{r_{n}} e_{1}^{s_{n}}\right)=$

$$
\left(\prod_{j=1}^{n} \operatorname{det}\left(g_{j}^{-1}\right)^{\frac{w-k_{j}}{2}}\right)\left(e_{0} g_{1}^{-1}\right)^{r_{1}}\left(e_{1} g_{1}^{-1}\right)^{s_{1}} \otimes \ldots \otimes\left(e_{0} g_{n}^{-1}\right)^{r_{n}}\left(e_{1} g_{n}^{-1}\right)^{s_{n}}
$$

Notice that (12) composed with $\tilde{\rho}^{(k)}$ restricted to $Z\left(G_{L}\right) \subset G_{L}$ acts as $\mathrm{Nm}_{F / Q}^{-(w-2)}$ and hence this operation factors to give 11 .

Definition 5. Set

$$
\mathcal{W}_{\mathbb{P}_{\mathbb{C}}^{1}}:=\mathcal{O}_{\mathbb{P}_{\mathbb{C}}^{1}} \otimes_{\mathbb{C}} W_{\mathbb{C}}=\operatorname{Sym}_{\mathbb{C}}^{k_{1}-2}\left(\mathcal{O}_{\mathbb{P}_{\mathbb{C}}^{1}} \otimes_{\mathbb{C}} V_{\mathbb{C}}^{\vee}\right) \otimes W_{2, \mathbb{C}} \otimes \ldots \otimes W_{n, \mathbb{C}}
$$

We define the following action

$$
R^{(k)}: G_{\mathbb{C}}^{c} \rightarrow \operatorname{Aut}_{\mathbb{C}}\left(\mathcal{W}_{\mathbb{P}_{\mathbb{C}}^{1}}\right)
$$

as the composition of $G_{\mathbb{C}} \cong G l_{2}(\mathbb{C})^{I}$ with

$$
\tilde{R}^{(k)}: G l_{2}(\mathbb{C})^{I} \rightarrow \operatorname{Aut}_{\mathbb{C}}\left(\mathcal{W}_{\mathbb{P}_{\mathbb{C}}^{1}}\right)
$$

given by

$$
\tilde{R}^{(k)}\left(g=\left(g_{1}, \ldots, g_{n}\right)\right)(f \otimes w):=\left(g_{1}^{-1} \cdot f\right) \otimes \tilde{\rho}^{(k)}(g)(w)
$$

where $g_{1}^{-1} \cdot f$ is defined in (5) and $\tilde{\rho}^{(k)}(g)(w)$ is defined above. This composition factors to give $R^{(k)}$.

Definition 6. Set $\alpha:=\frac{w-k_{1}}{2}$. The exact sequence (7) defines a filtration

$$
\mathcal{W}_{\mathbb{P}_{\mathbb{C}}^{1}}=F_{\mathbb{P}_{\mathbb{C}}^{1}}^{\alpha} \supset F_{\mathbb{P}_{\mathbb{C}}^{1}}^{\alpha+1} \supset \ldots \supset F_{\mathbb{P}_{\mathbb{C}}^{1}}^{\alpha+k_{1}-2} \supset 0
$$

with

$$
\begin{equation*}
F_{\mathbb{P}_{\mathbb{C}}^{1}}^{\alpha+p}=\mathcal{O}_{\mathbb{P}_{\mathbb{C}}^{1}}(-1)^{\otimes p} \cdot \operatorname{Sym}^{k_{1}-2-p}\left(V_{\mathbb{C}}^{\vee}\right) \otimes W_{2, \mathbb{C}} \otimes \ldots \otimes W_{n, \mathbb{C}} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{F_{\mathbb{P}_{\mathbb{C}}^{1}}^{\alpha+p}}{F_{\mathbb{P}_{\mathbb{C}}^{1}}^{\alpha+p+1}}=\mathcal{O}_{\mathbb{P}_{\mathbb{C}}^{1}}(-1)^{\otimes p} \otimes \mathcal{O}_{\mathbb{P}_{\mathbb{C}}^{1}}(1)^{\otimes k_{1}-2-p}\left(V_{\mathbb{C}}^{\vee}\right) \otimes W_{2, \mathbb{C}} \otimes \ldots \otimes W_{n, \mathbb{C}} . \tag{15}
\end{equation*}
$$

Definition 7. - For $K \subset G\left(\mathbb{A}_{f}\right)$ small enough and $g \in G\left(\mathbb{A}_{f}\right)$ define

$$
\mathcal{W}_{\Gamma_{g}(K)}^{(k)}:=\left(\mathcal{W}_{\mathbb{P}^{1}(\mathbb{C})_{\mid X^{+}}}\right)^{\Gamma_{g}(K)} \quad \text { on } \Gamma_{g}(K) \backslash X^{+},
$$

where $\Gamma_{g}(K)$ acts via

$$
\Gamma_{g}(K) \subset G^{c}(\mathbb{Q})_{+} \subset G^{c}(\mathbb{C}) \xrightarrow{R^{(k)}} \operatorname{Aut}_{\mathbb{C}}\left(\mathcal{W}_{\mathbb{P}_{\mathbb{C}}^{1}}\right) .
$$

- Define

$$
\mathcal{W}_{K}^{(k)}:=\prod_{g \in G(\mathbb{Q})_{+} \backslash G\left(\mathbb{A}_{f}\right)_{+} / K} j_{g *} \mathcal{W}_{\Gamma_{g}(K)}^{(k)},
$$

where $j_{g}: \Gamma_{g}(K) \backslash X^{+} \hookrightarrow M_{K}(\mathbb{C})$ is the natural inclusion.

- Define

$$
\mathcal{W}^{(k)}=\underset{K}{\lim } \pi_{K}^{-1} \mathcal{W}_{K}^{(k)},
$$

where $\pi_{K}: M(\mathbb{C}) \rightarrow M_{K}(\mathbb{C})$ is the projection.

- Define a $G\left(\mathbb{A}_{f}\right)$-action on $\mathcal{W}^{(k)}$ in the following way: For $a \in G\left(\mathbb{A}_{f}\right)$ we have $\Gamma_{g}(K)=\Gamma_{g a}\left(a^{-1} K a\right)$. Thus

$$
\Gamma_{g}(K) \backslash X^{+} \cong \Gamma_{g a}\left(a^{-1} K a\right) \backslash X^{+} \quad \text { and } \quad \mathcal{W}_{\Gamma_{g}(K)}^{(k)} \cong \mathcal{W}_{\Gamma_{g a}\left(a^{-1} K a\right)}^{(k)} .
$$

This induces the $G\left(\mathbb{A}_{f}\right)$-action (a sends an element from $\mathcal{W}_{\Gamma_{g}(K)}^{(k)}$ via the second isomorphism to an element in $\mathcal{W}_{\Gamma_{g a}\left(a^{-1} K a\right)}^{(k)}$.)

- In the same way the trivial connection

$$
d: \mathcal{W}_{\mathbb{P}_{\mathbb{C}}^{1}}^{(k)} \rightarrow \mathcal{W}_{\mathbb{P}_{\mathbb{C}}^{1}}^{(k)} \otimes \Omega_{\mathbb{P}_{\mathbb{C}}^{1}}^{1}
$$

descends to give connections

$$
\begin{aligned}
& \nabla_{\Gamma_{g}}: \mathcal{W}_{\Gamma_{g}}^{(k)} \rightarrow \mathcal{W}_{\Gamma_{g}}^{(k)} \otimes \Omega_{\Gamma_{g \backslash X}+X^{+}}^{1}, \\
& \nabla_{K}: \mathcal{W}_{K}^{(k)} \rightarrow \mathcal{W}_{K}^{(k)} \otimes \Omega_{M_{K}(\mathbb{C})}^{1}
\end{aligned}
$$

and

$$
\nabla: \mathcal{W}^{(k)} \rightarrow \mathcal{W}^{(k)} \otimes \Omega_{M(\mathbb{C})}^{1} .
$$

This last connection being compatible with the $G\left(\mathbb{A}_{f}\right)$-action.

- In the same way the filtration $F_{\mathbb{P}_{\mathbb{C}}^{1}}^{\cdot} \subset \mathcal{W}_{\mathbb{P}_{\mathbb{C}}^{1}}^{(k)}$ descends to give filtrations

$$
\begin{aligned}
& \mathcal{W}_{\Gamma_{g}}^{(k)}=F_{\Gamma_{g}}^{\alpha} \supset \ldots \supset F_{\Gamma_{g}}^{\alpha+k_{1}-2} \supset 0, \\
& \mathcal{W}_{K}^{(k)}=F_{K}^{\alpha} \supset \ldots \supset F_{K}^{\alpha+k_{1}-2} \supset 0
\end{aligned}
$$

and

$$
\mathcal{W}^{(k)}=F^{\alpha} \supset \ldots \supset F^{\alpha+k_{1}-2} \supset 0 .
$$

This last being compatible with the $G\left(\mathbb{A}_{f}\right)$-action.
The last part of the filtration becomes an extra name:

$$
\begin{gathered}
\mathcal{V}_{\Gamma_{g}}^{(k)}:=F^{\alpha+k_{1}-2}=\left(\left(\mathcal{O}_{X^{+}}\left(e_{0}-z e_{1}\right)\right)^{\otimes k_{1}-2} \otimes_{\mathbb{C}} W_{2, \mathbb{C}} \otimes \ldots \otimes W_{n, \mathbb{C}}\right)^{\Gamma_{g}}, \\
\mathcal{V}_{K}^{(k)}:=F^{\alpha+k_{1}-2}, \quad \mathcal{V}^{(k)}:=F^{\alpha+k_{1}-2} .
\end{gathered}
$$

- Considering W as a constant sheaf on $\mathbb{P}_{\mathbb{C}}^{1}$ we define

$$
\mathcal{P}_{L, \Gamma_{g}}^{(k)}:=\left(W_{\mathbb{P}^{1}(\mathbb{C})_{\mid X^{+}}}\right)^{\Gamma_{g}}
$$

where Γ_{g} acts via

$$
\Gamma_{g} \subset G^{c}(\mathbb{Q})_{+} \subset G^{c}(L) \xrightarrow{\rho^{(k)}} G l(W)
$$

In the same way as above we obtain $\mathcal{P}_{L, K}^{(k)}$ and $\mathcal{P}_{L}^{(k)}$. We set

$$
\mathcal{P}_{\mathbb{C}}^{(k)}:=\mathcal{P}_{L}^{(k)} \otimes_{L} \mathbb{C}, \quad \text { etc. }
$$

Proposition 8. Take $K \subset G\left(\mathbb{A}_{f}\right)$ small enough and $\Gamma_{g}=\Gamma_{g}(K)$.
(i) The sheaves $\mathcal{W}_{\Gamma_{g}}^{(k)}, F_{\Gamma_{g}}^{\alpha+p}, p=0, \ldots, k_{1}-2$, are locally free on $\Gamma_{g} \backslash X_{+}$and $\mathcal{P}_{L, \Gamma_{g}}^{(k)}$ is a local system.
(ii)

$$
\mathcal{P}_{\mathbb{C}}^{(k)}=\left(\mathcal{W}^{(k)}\right)^{\nabla}=\operatorname{Ker}\left(\nabla: \mathcal{W}^{(k)} \rightarrow \mathcal{W}^{(k)} \otimes \Omega_{M(\mathbb{C})}^{1}\right)
$$

in particular $\mathcal{P}_{\mathbb{C}}^{(k)} \otimes_{\mathbb{C}} \mathcal{O}_{M(\mathbb{C})}=\mathcal{W}^{(k)}$.
(iii) $\mathcal{P}_{L, \Gamma_{g}}^{(k)}$ is the local system attached to the (monodromy) representation

$$
\pi_{1}\left(\Gamma_{g} \backslash X_{+}\right)=\Gamma_{g} \subset G^{c}(\mathbb{Q})_{+} \rightarrow G^{c}(L) \rightarrow G l(W)
$$

(iv) For all primes $\lambda \in L$ there exists a lisse L_{λ}-sheaf $\mathcal{P}_{\lambda, K, \text { ét }}^{(k)}$ (with L_{λ} being the λ-adic completion of L) on the étale side $\left(M_{K, \mathbb{C}}\right)$ ét such that

$$
\left(\mathcal{P}_{\lambda, K, e ́ t}^{(k)}\right)^{a n}=\mathcal{P}_{L, K}^{(k)} \otimes_{L} L_{\lambda} .
$$

Proof. (i) follows because Γ_{g} acts freely on X_{+}(see Remark 3). For (ii) and (iii) just unravel the definitions. Finally the representation in (iii) is continuous in the λ-adic topology on the right and the profinite topology on the left. Hence we can complete both sides in the respective topology to obtain a representation

$$
\pi_{1}\left(\Gamma_{g} \backslash X_{+}\right)_{\text {ét }}=\pi_{1}\left(\widehat{\Gamma_{g} \backslash X_{+}}\right) \rightarrow G l\left(W \otimes_{L} L_{\lambda}\right)
$$

and this gives the desired lisse sheaf (see SGA 5 VI 1).
Theorem 9. The lisse sheaves $\mathcal{P}_{\lambda, K}^{(k)}$ live already on $\left(M_{K}\right)$ ét for all λ and $\mathcal{W}^{(k)}$, $F^{\alpha+p}$ and in particular $\mathcal{V}^{(k)}$ live already on $M_{\operatorname{Spec} L}$.
Proof. For the second part see [Mi90]. For the first part assume λ is a prime over l. Then $\mathcal{P}_{\lambda, K}^{(k)}$ being a lisse sheaf means for all n there is a projective system of locally constant \mathbb{Z} / l^{n}-sheaves $\mathcal{P}_{n, K}^{(k)}$ on $\left(M_{K, \mathbb{C}}\right)_{\text {ét }}$ such that $\mathcal{P}_{\lambda, K}^{(k)}=\lim _{{ }_{n}} \mathcal{P}_{n, K}^{(k)} \otimes_{\mathbb{Z}_{l}} L_{\lambda}$. Since $\mathcal{P}_{n, K}^{(k)}$ is locally constant it is already defined over $\left(M_{K}\right)$ ét.

Proposition 10. Denote by \mathcal{E}_{K} the sheaf of \mathbb{C}-valued C^{∞}-functions on $M_{K}(\mathbb{C})$. A subscript $(-)_{\mathcal{E}_{K}}$ will mean $\otimes_{\mathcal{O}_{M_{K}(\mathbb{C})}} \mathcal{E}_{K}$. Then

- $\nabla F_{K}^{p} \subset F_{K}^{p-1} \otimes \Omega_{M_{K}(\mathbb{C})}^{1}$.
- $\mathcal{W}_{K, \mathcal{E}}^{(k)}=\bigoplus_{p+q=w-2}\left(\mathcal{W}_{K}^{(k)}\right)^{p, q}$, with $\left(\mathcal{W}_{K}^{(k)}\right)^{p, q}:=F_{K, \mathcal{E}_{K}}^{p} \cap \overline{F_{K, \mathcal{E}_{K}}^{q}} \cong F_{\mathcal{E}_{K}}^{p} / F_{\mathcal{E}_{K}}^{p+1}$. In particular $\left(\mathcal{W}_{K}^{(k)}\right)^{p, q}=0$ if $p \neq\left[\alpha, \alpha+k_{1}-2\right]$.

Proof. It is enough to prove the statement on $\mathbb{P}^{1}(\mathbb{C})$ and since the filtration only affects the first factor in

$$
\mathcal{W}_{\mathbb{P}^{1}}=\operatorname{Sym}_{\mathbb{C}}^{k_{1}-2}\left(\mathcal{O}_{\mathbb{P}^{1}} \otimes V_{\mathbb{C}}^{\vee}\right) \otimes W_{2, \mathbb{C}} \otimes \ldots \otimes W_{n, \mathbb{C}}
$$

it is enough to prove the corresponding statement for $\mathcal{W}^{\prime}:=\operatorname{Sym}_{\mathbb{C}}^{k_{1}-2}\left(\mathcal{O}_{\mathbb{P}^{1}} \otimes V_{\mathbb{C}}^{\vee}\right)$. Then by 14

$$
F^{p+q}\left(\mathcal{W}^{\prime}\right)=\left(e_{0}-z e_{1}\right)^{p} \cdot \operatorname{Sym}^{k_{1}-2-p}\left(\mathcal{O}_{\mathbb{P}^{1}} \otimes V_{\mathbb{C}}^{\vee}\right)
$$

Now take $f=\left(e_{0}-z e_{1}\right)^{p} v \in F^{\alpha+p}\left(\mathcal{W}^{\prime}\right)$. Then

$$
\begin{equation*}
\nabla f=-p\left(e_{0}-z e_{1}\right)^{p-1} e_{1} v \otimes d z+\left(e_{0}-z e_{1}\right)^{p} \nabla v \in F^{\alpha+p-1}\left(\mathcal{W}^{\prime}\right) \otimes \Omega_{\mathbb{P}^{1}}^{1} \tag{16}
\end{equation*}
$$

This gives (i). For (ii) notice that $\left(e_{0}-z e_{1}\right)$ and $\left(e_{0}-\bar{z} e_{1}\right)$ is a basis for $\mathcal{E}_{\mathbb{P}^{1}} \otimes V_{\mathbb{C}}^{\vee}$. Thus

$$
\begin{equation*}
\left(e_{0}-z e_{1}\right)^{r}\left(e_{0}-\bar{z} e_{1}\right)^{s}, \quad \text { with } r \geq p \text { and } r+s=k_{1}-2 \tag{17}
\end{equation*}
$$

is a basis for $F^{\alpha+p}\left(\mathcal{W}^{\prime}\right)$. Hence for $\alpha+p+\alpha+q=w-2$, i.e. $p+q=k_{1}-2$ we have

$$
F_{\mathcal{E}_{\mathbb{P}^{1}}}^{\alpha+p} \cap \overline{F_{\mathcal{E}_{\mathbb{P}^{1}}}^{\alpha+q}}=\left(e_{0}-z e_{1}\right)^{p}\left(e_{0}-\bar{z} e_{1}\right)^{q} \mathcal{E}_{\mathbb{P}^{1}}
$$

This gives

$$
\mathcal{W}^{\prime}=\oplus_{\alpha+p+\alpha+q=w-2} F_{\mathcal{E}_{\mathbb{P}^{1}}}^{\alpha+p} \cap \overline{F_{\mathcal{E}_{\mathbb{P}^{1}}}^{\alpha+q}}
$$

The isomorphism $F_{\mathcal{E}_{\mathbb{P}^{1}}}^{\alpha+p} \cap \overline{F_{\mathcal{E}_{\mathbb{1}}}^{\alpha+q}} \cong F_{\mathcal{E}_{\mathbb{P}^{1}}}^{\alpha+p} / F_{\mathcal{E}_{\mathbb{P}}}^{\alpha+p+1}$ is clear.
We still have $G^{c}(\mathbb{C})$ acting on $\mathcal{W}_{\Gamma_{g}}^{(k)}$ for all Γ_{g}. An element

$$
\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in G l(\mathbb{R})_{+}=G l_{2}(\mathbb{R})_{+} \times \mathbb{H}^{\times} \times \ldots \times \mathbb{H}^{\times}
$$

defines a point $P_{\gamma} \in X_{+}$. If we identify X_{+}with the upper half plane, then

$$
P_{\gamma}=\gamma_{1} \cdot i=\frac{a i+b}{c i+d}, \quad \gamma_{1}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

In this case denote by \bar{P}_{γ} the image of P_{γ} in $\Gamma_{g} \backslash X_{+}$. If we identify X_{+}with $\left\{g h(-) g^{-1} \mid g \in G(\mathbb{R})_{+}\right\}$, then

$$
P_{\gamma}=h_{\gamma}:=\gamma h(-) \gamma^{-1}: \mathbb{S}(\mathbb{R}) \rightarrow G(\mathbb{R})
$$

We obtain an action of $\mathbb{S}(\mathbb{R})$ on the fiber $\mathcal{W}_{\Gamma_{g},\left(\bar{P}_{\gamma}\right)}^{(k)}=\mathcal{W}_{\Gamma_{g}}^{(k)} \otimes \mathcal{O}_{\bar{P}_{\gamma}} k\left(\bar{P}_{\gamma}\right)$ via

$$
\begin{equation*}
\xi_{\gamma}:=R_{\left(\bar{P}_{\gamma}\right)}^{(k)} \circ \text { nat } \circ h_{\gamma}: \mathbb{C}^{\times}=\mathbb{S}(\mathbb{R}) \xrightarrow{h_{\gamma}} G(\mathbb{R}) \xrightarrow{\text { nat }} G^{c}(\mathbb{C}) \xrightarrow{R_{\left(\bar{P}_{\gamma}\right)}^{(k)}} \operatorname{Aut}\left(\mathcal{W}_{\Gamma,\left(\bar{P}_{\gamma}\right)}^{(k)}\right), \tag{18}
\end{equation*}
$$

where nat denotes the natural map.
Proposition 11. Denote

$$
W_{\gamma}^{p, q}:=\left\{w \in \mathcal{W}_{\Gamma_{g},\left(\bar{P}_{\gamma}\right)} \left\lvert\, \xi_{\gamma}(z)(w)=\frac{1}{z^{p}} \frac{1}{z^{q}} w\right., \forall z \in \mathbb{C}^{\times}\right\}
$$

Then

$$
W_{\gamma}^{p, q}= \begin{cases}F_{\Gamma_{g},\left(\bar{P}_{\gamma}\right)}^{p} / F_{\Gamma_{g},\left(\bar{P}_{\gamma}\right)}^{p+1} & \text { if } p+q=w-2 \\ 0 & \text { else. }\end{cases}
$$

In particular $W_{\gamma}^{p, q}=0$ if $p \notin\left[\alpha, \alpha+k_{1}-2\right]$ and $W_{\gamma}^{\alpha+k_{1}-2, \alpha} \cong \mathcal{V}_{\Gamma_{g},\left(\bar{P}_{\gamma}\right)}^{(k)}$.

Proof. It is enough to prove the corresponding statement on $\mathbb{P}^{1}(\mathbb{C})$. We have

$$
\mathcal{W}_{\mathbb{P}^{1}(\mathbb{C}), P}^{(k)} \cong W_{\mathbb{C}}=W_{1, \mathbb{C}} \otimes \ldots \otimes W_{n, \mathbb{C}} .
$$

By definition of $h, \mathbb{S}(\mathbb{R})$ acts non-trivially only on $W_{1, \mathbb{C}}=\operatorname{Sym}^{k_{1}-2}\left(V_{\mathbb{C}}^{\vee}\right)$. Thus it is enough to prove the corresponding statement for $\mathcal{W}^{\prime}:=\operatorname{Sym}^{k_{1}-2}\left(\mathcal{E}_{\mathbb{P}^{1}} \otimes V_{\mathbb{C}}^{\vee}\right)$ and to assume $\gamma=\gamma_{1}$. Set

$$
e_{0, \gamma}:=\left(e_{0}-i e_{1}\right) \gamma^{-1}, \quad e_{1, \gamma}=\left(e_{0}+i e_{1}\right) \gamma^{-1} .
$$

Then for $z=x+i y$

$$
e_{0, \gamma} \cdot\left(\gamma h(z) \gamma^{-1}\right)=\left(e_{0}-i e_{1}\right)\left(\begin{array}{cc}
x & y \\
-y & x
\end{array}\right)=z e_{0, \gamma}
$$

and

$$
e_{1, \gamma}\left(\gamma h(z) \gamma^{-1}\right)=\bar{z} e_{1, \gamma} .
$$

Thus for $r+s=k_{1}-2$

$$
\begin{align*}
\xi(z)\left(e_{0, \gamma}^{r} e_{1, \gamma}^{s}\right) & =\left(\operatorname{det}\left(h_{\gamma}(z)\right)^{-1}\right)^{\alpha}\left(e_{0, \gamma} h_{\gamma}(z)^{-1}\right)^{r}\left(e_{1, \gamma} h_{\gamma}(z)^{-1}\right)^{s} \tag{19}\\
& =\frac{1}{|z|^{2 \alpha}} \frac{1}{z^{r} \bar{z}^{s}} e_{0, \gamma}^{r} e_{1, \gamma}^{s} \tag{20}\\
& =\frac{1}{z^{r+\alpha}} \frac{1}{\bar{z}^{s+\alpha}} e_{0, \gamma}^{r} e_{1, \gamma}^{s} . \tag{21}
\end{align*}
$$

This shows $W_{\gamma}^{p, q}$ is spanned by $e_{0, \gamma}^{p-\alpha} e_{1, \gamma}^{q-\alpha}$ if $p+q=w-2$ and $p \in\left[\alpha, \alpha+k_{1}-2\right]$ and is 0 else. On the other hand $F_{\mathcal{E}}^{p}$ is spanned by (see 17)

$$
\left(e_{0}-z e_{1}\right)^{r}\left(e_{0}-\bar{z} e_{1}\right)^{s}, \quad \text { with } r \geq p \text { and } r+s=k_{1}-2 .
$$

Now the statement follows since in the fiber P_{γ} the vectors

$$
\left(e_{0}-z e_{1}\right)_{\left(P_{\gamma}\right)}=\left(e_{0}-(\gamma . i) e_{1}\right) \quad \text { and } \quad\left(e_{0}-\bar{z} e_{1}\right)_{\left(P_{\gamma}\right)}=\left(e_{0}+(\gamma . i) e_{1}\right)
$$

are multiples of $e_{0, \gamma}$ and $e_{1, \gamma}$ respectively, by (9).
Recall the following definition.
Definition 12. Let \mathcal{P} be a local system of \mathbb{R}-vector spaces on a smooth projective manifold S. A variation of Hodge structures (VHS) of weight k on \mathcal{P} is a filtration

$$
\mathcal{P} \otimes_{\mathbb{R}} \mathcal{O}_{S} \supset \ldots \supset F^{p} \supset F^{p-1} \supset \ldots
$$

such that
(i) $\nabla F^{p} \subset F^{p-1} \otimes \Omega_{S}^{1}$, where $\nabla: \mathcal{P} \otimes \mathcal{O}_{S} \rightarrow \mathcal{P} \otimes \Omega_{S}^{1}$ is the connection defined by the local system.
(ii) $\mathcal{P} \otimes_{\mathbb{R}} \mathcal{E}_{S}=\oplus_{p+q=k} \mathcal{E}^{p, q}(\mathcal{P})$, with $\mathcal{E}^{p, q}(\mathcal{P}):=F_{\mathcal{E}}^{p} \cap \overline{F_{\mathcal{E}}^{q}}, p+q=k$.

A VHS of weight k is thus a Hodge structure of weight k in each fiber $\mathcal{P}_{(s)}, s \in S$, varying holomorphically.

There is also the notion of a polarization of a VHS on \mathcal{P}, which we omit.
Theorem 13 (Deligne, see Zu79 Thm (2.9)). Let \mathcal{P} be a VHS of weight k as above, which admits a polarization. Then $H^{i}\left(S, \mathcal{P}_{\mathbb{C}}\right)$ is a Hodge structure of weight $k+i$ and there is a canonical decomposition

$$
H\left(S, \mathcal{P}_{\mathbb{C}}\right)=\oplus_{p+q=i} H^{p+q}\left(S, G r_{F}^{p} \Omega_{S}(\mathcal{P})\right) .
$$

Remark 14. Proposition 10 shows that $\mathcal{P}_{K, \mathbb{C}}^{(k)}$ is almost a VHS. The only missing thing is that $\mathcal{P}_{K, \mathbb{C}}^{(k)}$ has no underlying local system of \mathbb{R}-vector spaces, since L is not real. We can fix this problem by simply considering $\mathcal{P}_{K, \mathbb{C}}^{(k)}$ as \mathbb{R}-vector spaces, i.e. let $\sigma: \operatorname{Spec} \mathbb{C} \rightarrow \operatorname{Spec} \mathbb{R}$ be the natural map and consider $\sigma_{*} \mathcal{P}_{K, \mathbb{C}}^{(k)}$. Then

$$
\sigma_{*} \mathcal{P}_{K, \mathbb{C}}^{(k)} \otimes_{\mathbb{R}} \mathcal{O}_{M_{K}(\mathbb{C})} \cong \mathcal{W}_{K, \mathbb{C}}^{(k)} \oplus \overline{\mathcal{W}_{K, \mathbb{C}}^{(k)}}=\mathcal{W}_{K, \mathbb{C}}^{(k)} \otimes_{\mathbb{R}} \mathbb{C}
$$

where we view $\mathcal{W}_{K, \mathbb{C}}^{(k)}$ and $\overline{\mathcal{W}_{K, \mathbb{C}}^{(k)}} \subset \mathcal{P}_{K, \mathbb{C}}^{(k)} \otimes_{\mathbb{C}} \mathcal{E}_{M_{K}(\mathbb{C})}$. This decomposition is induced by

$$
\mathbb{C} \otimes_{\mathbb{R}} \mathcal{O}_{M_{K}(\mathbb{C})} \cong \mathcal{O}_{M_{K}(\mathbb{C})} \oplus \overline{\mathcal{O}_{M_{K}(\mathbb{C})}} \subset \mathcal{E}_{M_{K}(\mathbb{C})}, \quad(1+i) \otimes f+(1-i) \otimes g \mapsto(f, \bar{g})
$$

We obtain a filtration

$$
\operatorname{Fil}_{K}^{p}:=F_{K}^{p} \otimes_{\mathbb{R}} \mathbb{C}=F_{K}^{p} \oplus \overline{F_{K}^{p}} \text { on } \sigma_{*} \mathcal{P}_{K, \mathbb{C}}^{(k)} \otimes_{\mathbb{R}} \mathcal{O}_{M_{K}(\mathbb{C})}
$$

which satisfies the analog statements of the Propositions 10 and 11 . Thus $\sigma_{*} \mathcal{P}_{K, \mathbb{C}}^{(k)}$ is a VHS of weight $w-2$. It follows from Proposition 11, that this VHS coincides with the one coming from the machinery of Shimura varieties (see [De79], [Mi90]). We use as a black box that there exists also a polarization of this VHS (see De79, [Mi90]). (Probably one can describe this very concretely as in [BaNe81].)

Theorem 15 ([Sa06], Proof of Lemma 1). There is a canonical isomorphism of $\mathbb{C}\left[G\left(\mathbb{A}_{f}\right)\right]$-modules

$$
\begin{aligned}
&\left.H^{1}(M(\mathbb{C})), \mathcal{P}^{(k)}\right) \cong Q M^{(k)} \oplus \overline{Q M^{(k)}} \\
& \cong H^{0}\left(M(\mathbb{C}), \mathcal{V}^{(k)} \otimes \Omega_{M(\mathbb{C})}^{1}\right) \oplus \overline{H^{0}\left(M(\mathbb{C}), \mathcal{V}^{(k)} \otimes \Omega_{M(\mathbb{C})}^{1}\right)}
\end{aligned}
$$

Proof. One easily checks $Q M^{(k)}=H^{0}\left(M(\mathbb{C}), \mathcal{V}^{(k)} \otimes \Omega^{1}\right)$. Further by Theorem 13 and Remark 14 we have a canonical decomposition (in particular compatible with the $G\left(\mathbb{A}_{f}\right)$-action)

$$
H^{1}\left(M(\mathbb{C}), \sigma_{*} \mathcal{P}^{(k)} \otimes_{\mathbb{R}} \mathbb{C}\right) \cong \oplus_{p+q=1} H^{p+q}\left(M(\mathbb{C}), \operatorname{Gr}_{\mathrm{Fil}}^{p} \Omega \cdot\left(\sigma_{*} \mathcal{P}^{(k)}\right)\right)
$$

On the other hand

$$
H^{1}\left(M(\mathbb{C}), \sigma_{*} \mathcal{P}^{(k)} \otimes_{\mathbb{R}} \mathbb{C}\right) \cong H^{1}\left(M(\mathbb{C}), \mathcal{P}^{(k)}\right) \oplus \overline{H^{1}\left(M(\mathbb{C}), \mathcal{P}^{(k)}\right)}
$$

and

$$
\begin{aligned}
H^{p+q}\left(M(\mathbb{C}), \operatorname{Gr}_{\mathrm{Fil}}^{p} \Omega\right. & \left.\left(\sigma_{*} \mathcal{P}^{(k)}\right)\right) \\
& \cong H^{p+q}\left(M(\mathbb{C}), \operatorname{Gr}_{F}^{p} \Omega \cdot\left(\mathcal{P}^{(k)}\right)\right) \oplus \overline{H^{p+q}\left(M(\mathbb{C}), \operatorname{Gr}_{F}^{p} \Omega \cdot\left(\mathcal{P}^{(k)}\right)\right)}
\end{aligned}
$$

The Theorem now follows from the following Lemma:

Lemma 16.

$$
H^{1}\left(M(\mathbb{C}), G r_{F}^{p} \Omega \cdot\left(\mathcal{P}^{(k)}\right)\right) \cong \begin{cases}H^{0}\left(M(\mathbb{C}), \mathcal{V}^{(k)} \otimes \Omega^{1}\right) & \text { if } p \in\left\{\alpha, \alpha+k_{1}-1\right\} \\ 0 & \text { else } .\end{cases}
$$

Proof. The filtration on $\Omega \cdot\left(\mathcal{P}^{(k)}\right)$ looks as follows:

It follows that $\operatorname{Gr}_{F}^{p}\left(\Omega \cdot\left(\mathcal{P}^{(k)}\right)\right)=0$ for $p<\alpha$ and $p>\alpha+k_{1}-1$. Now assume $\alpha<p<\alpha+k_{1}-1$. Then

$$
\operatorname{Gr}_{F}^{p} \nabla: F^{p} / F^{p+1} \rightarrow F^{p-1} / F^{p} \otimes \Omega^{1}
$$

is an isomorphism. Indeed it is enough to check this on $\mathbb{P}^{1}(\mathbb{C})$ and then it follows from (16) that $\operatorname{Gr}_{f}^{p}(\nabla)$ is given by $\left(e_{0}-z e_{1}\right)^{p} v \mapsto-p\left(e_{0}-z e_{1}^{p-1}\right) e_{1} v \otimes d z \bmod F^{p}$, which is an isomorphism. Thus

$$
H^{1}\left(M(\mathbb{C}), \operatorname{Gr}_{F}^{p}\left(\Omega^{\prime}\left(\mathcal{P}^{(k)}\right)\right)\right)=0 \quad \text { for } \alpha<p<\alpha+k_{1}-1
$$

If $p=\alpha+k_{1}-1$, then

$$
\operatorname{Gr}_{F}^{p}\left(\Omega \cdot\left(\mathcal{P}^{(k)}\right)\right)=\left(0 \rightarrow \mathcal{V}^{(k)} \otimes \Omega^{1}\right)
$$

and hence

$$
H^{1}\left(M(\mathbb{C}), \operatorname{Gr}_{F}^{\alpha+k_{1}-1}\left(\Omega \cdot\left(\mathcal{P}^{(k)}\right)\right)\right)=H^{0}\left(M\left(\mathbb{C}, \mathcal{V}^{(k)}\right) \otimes \Omega^{1}\right)
$$

Finally for $p=\alpha$ we have

$$
\operatorname{Gr}_{F}^{\alpha}\left(\Omega \cdot\left(\mathcal{P}^{(k)}\right)\right)=\left(F^{\alpha} / F^{\alpha+1} \rightarrow 0\right)
$$

and it follows from (15) that $F^{\alpha} / F^{\alpha+1} \cong\left(\mathcal{V}^{(k)}\right)^{\vee}$. Thus

$$
H^{1}\left(M(\mathbb{C}), \operatorname{Gr}_{F}^{\alpha}\left(\Omega \cdot\left(\mathcal{P}^{(k)}\right)\right)\right) \cong H^{1}\left(M(\mathbb{C}), \mathcal{V}^{(k)^{\vee}}\right) \cong H^{0}\left(M(\mathbb{C}), \mathcal{V}^{(k)} \otimes \Omega^{1}\right)
$$

the last isomorphism being Serre duality, which is also compatible with the $G\left(\mathbb{A}_{f}\right)$ action. This proves the Lemma and hence the Theorem.

Remark 17. Going attentively through the proof one sees that we obtain in fact

$$
H^{0}\left(M(\mathbb{C}), \mathcal{V}^{(k)} \otimes \Omega_{M(\mathbb{C})}^{1}\right) \cong \overline{H^{0}\left(M(\mathbb{C}), \mathcal{V}^{(k)} \otimes \Omega_{M(\mathbb{C})}^{1}\right)}
$$

and one can check that the isomorphism from Theorem 15 is induced by tensoring the following isomorphism with $\otimes_{L_{\lambda}} \mathbb{C}$

$$
H_{\text {êt }}^{1}\left(M_{L}, \mathcal{P}_{\lambda}^{(k)}\right) \cong\left(H^{0}\left(M_{L}, \mathcal{V}_{L}^{(k)} \otimes \Omega_{M_{L}}^{1}\right) \otimes_{L} L_{\lambda}\right)^{\oplus 2}
$$

where λ is any prime in L and $\mathcal{P}_{\lambda}^{(k)}$ and $\mathcal{V}_{L}^{(k)}$ are the sheaves given by Theorem 9 , see [Sa06, Proof of Lemma 1] for details.

References

[BaNe81] P. Báyer, J. Neukirch, On automorphic forms and Hodge theory. Math. Ann. 257, 137-155, 1981.
[Bo05] T. van den Bogaart, Construction of Galois representations in the cohomology of Shimura curves. http://www.math.leidenuniv.nl/~edix/ics/AG_Fall_2005/notes/ bogaart.pdf 2005.
[De79] P. Deligne, Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques. Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, pp. 247-289, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979.
[De71] P. Deligne, Théorie de Hodge. II. Inst. Hautes Études Sci. Publ. Math. No. 40 (1971), 5-57.
[Ku08] S. Kukulies, Shimura curves II. Talk at the Arithmetic Geometry Seminar in Essen, June 2008. http://www.uni-due.de/~hx0037/QuatAlg/Kukulies.pdf
[Mi90] J. S. Milne, Canonical models of (mixed) Shimura varieties and automorphic vector bundles. Automorphic forms, Shimura varieties, and L-functions, Vol. I (Ann Arbor, MI, 1988), 283414, Perspect. Math., 10, Academic Press, Boston, MA, 1990. http://www.jmilne.org/math/ articles/1990aT.pdf
[Sa06] T. Saito, Hilbert Modular Forms and p-adic Hodge Theory. http://arxiv.org/pdf/math/ 0612077, 2006.
[Wi08] G. Wiese, Galois Representation Attached to a Hilbert Modular Form. Talk at the Arithmetic Geometry Seminar in Essen, July 2008. http://www.uni-due.de/~hx0037/QuatAlg/ Wiese.pdf
[Zu79] S. Zucker, Hodge theory with degenerating coefficients. L_{2} cohomology in the Poincar metric. Ann. of Math. (2) 109 (1979), no. 3, 415-476.

Universität Duisburg-Essen, Campus Essen, FB Mathematik, 45117 Essen, Germany
E-mail address: kay.ruelling@uni-due.de

