Quaternion Algebras over Global Fields

Eduardo Ocampo

June 3, 2008

Abstract

This is an expository work of the classification of Quaternion Algebras over algebraic number fields for the Forschungsseminar Sommersemester 08

1 Introduction

In this section I'll recall some results of the previous talks. Let K be a field with char $K \neq 2$ and let H be a quaternion algebra over K. We can find a basis of H of the form $\{1, i, j, ij\}$ such that $i^2 = a$, $j^2 = b$, ij = -ji for some $a, b \in K^*$. We denote then $H = \left(\frac{a,b}{K}\right)$.

Example 1.1

Let K be a field. The K-algebra $\left(\frac{1,-1}{K}\right)$ is isomorphic to the matrix algebra $Mat_2(K)$.

Let () denotes the involution of H such that if $x = x_0 + x_1i + x_2j + x_3ij$, then $\overline{x} = x_0 - x_1i - x_2j - x_3ij$. Define

$$N(x) = x \cdot \overline{x} \quad reduced \ norm$$
$$Tr(x) = x + \overline{x} \quad reduced \ trace$$

as functions from H into K, for all $x \in H$. Furthermore, the reduced norm is a quadratic form of rank 4 over K with corresponding bilinear form $B(x, y) = Tr(x\overline{y})$. The set of *pure* quaternion elements of a quaternion algebra $H = \begin{pmatrix} a, b \\ K \end{pmatrix}$ is defined as

$$H_0 = \{ x \in H | Tr(x) = 0 \}.$$

The following result gives us a characterization of H in terms of quadratic forms:

Proposition 1.1

Let H, H' be quaternion algebras over a field K. Then the following are equivalent:

- 1. H and H' are algebra isomorphic.
- 2. (H, N) and (H', N') are isometric quadratic spaces.
- 3. $(H_0, N|_{H_0})$ and $(H'_0, N|_{H'_0})$ are isometric quadratic spaces.

We then turn to world of quadratic spaces in order to obtain some classifications in the case when the field K is a global field.

2 Basics on Quadratic Forms

Let (V, Q) be a quadratic space and a basis $\{v_i, \ldots, v_n\}$. The *discriminant* of V is defined as

$$dV := \det[B(v_i, v_j)] \mod K^{*2}.$$

If W is a subspace of V, we say that W splits V if there exist U subspace of V such that $V \cong W \perp U$ (here B(W,U) = 0). It is clear that if $V \cong V_1 \perp \cdots \perp V_r$, then $dv = dV_1 \cdots dV_r$.

Let $a_1, \ldots, a_n \in K^*$. The notation $V \cong \langle a_1 \rangle \perp \cdots \perp \langle a_n \rangle$ means that we have an orthogonal basis $\{v_1, \ldots, v_n\}$ of V and $Q(v_i) = a_i$ for all i. In this case $dV = a_1 \cdots a_n$.

Example 2.1

Let $H = \left(\frac{a,b}{K}\right)$ be a quaternion algebra. Then $H \cong \langle 1 \rangle \perp \langle a \rangle \perp \langle b \rangle \perp \langle ab \rangle$ and hence dH = 1.

Definition 2.1

Let (V, Q) be a quadratic space.

- 1. The space (V,Q) is called isotropic if Q represents 0 (i.e. exist a non-zero vector $v \in V$ s.t. Q(v) = 0).
- 2. The space (V, Q) is called regular if

$$\{v \in V | B(v, V) = 0\} = \{\overline{0}\}\$$

(in our case this is equivalent to say that B is non-degenerate)

Remark 1

Let (V, Q) be a regular quadratic space over a field $K, a \in K^*$. Then $a \in Q(V) \iff \langle -a \rangle \perp V$ is isotropic.

We finish this section by giving an elementary but useful lemma in order to characterize when a quaternion algebra is a matrix algebra.

Lemma 1

let K be a field, $a, b \in K^*$. Then the following are equivalent.

- 1. $\left(\frac{a,b}{K}\right) \cong \left(\frac{1,-1}{K}\right).$
- 2. $\left(\frac{a,b}{K}\right)$ is not a division algebra.
- 3. $\left(\left(\frac{a,b}{K}\right), N\right)$ is isotropic.
- 4. $\left(\left(\frac{a,b}{K}\right)_0, N'\right)$ is isotropic (here N' is N restricted to $\left(\frac{a,b}{K}\right)_0$).
- 5. $\langle a \rangle \perp \langle b \rangle$ represents 1.
- 6. $a \in N_{F/K}(F)$ where $F = K[\sqrt{b}]$.

3 Quadratic Forms over Global Fields

Let now K be a global field; for instance we suppose that K is an algebraic number field and everthing is equivalent in the function field case. Denote Ω_K the set of (non-trivial) places of K. A quadratic K-space (V, Q) is called *isotropic at* $\mathfrak{p} \in \Omega_K$ if the space $V_{\mathfrak{p}} := (V \otimes_K K_{\mathfrak{p}}, Q)$ is isotropic.

We have then the first important result called *Hasse Principle* related to quadratic spaces:

Theorem 3.1

A regular quadratic space over a global field K is isotropic if and only if it is isotropic at all $\mathfrak{p} \in \Omega_K$.

and as a direct consecuence:

Theorem 3.2 (Hasse-Minkowski)

Let U, V regular quadratic spaces over a global field K. Then U is isometric to V if and only if $U_{\mathfrak{p}}$ is isometric to $V_{\mathfrak{p}}$ for all $\mathfrak{p} \in \Omega_K$.

Definition 3.1

Let H be a quaternion algebra over a global field K, and $\mathfrak{p} \in \Omega_K$. We say that H is ramified at \mathfrak{p} if $H_{\mathfrak{p}} \cong \mathbb{H}_{\mathfrak{p}}$ where $\mathbb{H}_{\mathfrak{p}}$ denotes the division algebra over $K_{\mathfrak{p}}$. If \mathfrak{p} is a real place one uses definite/indefinite instead of ramified/unramified.

Then we have our first classification theorem of quaternion algebras over global fields:

Theorem 3.3

Let K be an algebraic number field, H and H' quaternion algebras over K. Then the following are equivalent.

- 1. $H \cong H'$.
- 2. $H_{\mathfrak{p}} \cong H'_{\mathfrak{p}}$ for all $\mathfrak{p} \in \Omega_K$.
- 3. H and H' ramifies at the same places.

Definition 3.2

Let K be a local field. given $a, b \in K^*$, we define their Hilbert symbol :

$$(a,b) = \begin{cases} +1 & if \ X^2 - aY^2 - bZ^2 \ represents \ 0\\ -1 & otherwise \end{cases}$$

Remark 2

Let $H = \left(\frac{a,b}{K}\right)$ defined over a global field and $\mathfrak{p} \in \Omega_K$. By lemma 1

$$\begin{array}{ll} H \text{ is unramified at } \mathfrak{p} & \Longleftrightarrow & H_{\mathfrak{p}} \text{ is not a division algebra} \\ & \Longleftrightarrow & X^2 - aY^2 - bZ^2 \text{ represents 0} \\ & \Leftrightarrow & +1 = (a,b)_{\mathfrak{p}} := (a,b) \text{ in } K_{\mathfrak{p}}. \end{array}$$

Proposition 3.1 (Properties of the Hilbert Symbol) Let $a, b, c \in K^*$, $\mathfrak{p} \in \Omega_K$.

- 1. (a) $(a, bc)_{\mathfrak{p}} = (a, b)_{\mathfrak{p}}(a, c)_{\mathfrak{p}}$ (b) $(a, -a)_{\mathfrak{p}} = 1$ (c) $(a, b^2)_{\mathfrak{p}} = 1.$
- 2. If \mathfrak{p} is a real place $(a, c)_{\mathfrak{p}} = -1$ if a < 0 and b < 0.
- 3. (a) $(a,b)_{\mathfrak{p}} = 1$ if $a, b \in R_{\mathfrak{p}}^*$. (b) $(a,\mathfrak{p})_{\mathfrak{p}} = \left(\frac{a}{\mathfrak{p}}\right)$ if $a \in R_{\mathfrak{p}}^*$.
- 4. $(a,b)_{\mathfrak{p}} = 1$ for almost all $\mathfrak{p} \in \Omega_K$ and

$$\prod_{\mathfrak{p}\in\Omega_K} (a,b)_{\mathfrak{p}} = 1. \qquad (The \ Product \ Formula)$$

Proof. see for example [Milne, lemma 6.6] or [O'Meara, \$63,71].

Corollary 3.1

Let H be a quaternion algebra over an algebraic number field K. Then H is ramified at an even number of places of K.

Definition 3.3

Let H be a quaternion algebra over an algebraic number field K. Define the (reduced) discriminant of H as

$$DH := \mathfrak{p}_1 \cdots \mathfrak{p}_r$$

where the $\mathfrak{p}'_i s$ are exactly the places at which H ramifies.

There is a natural question: If we have $\mathcal{A}_{\mathfrak{p}}$ quaternion algebras for each $\mathfrak{p} \in \Omega_K$, is it possible to find H a quaternion algebra over K such that $H_{\mathfrak{p}} \cong \mathcal{A}_{\mathfrak{p}}$ for all $\mathfrak{p} \in \Omega_K$?

Definition 3.4

Let (V, Q) a regular quadratic space over a global field K and a representation of V as $V \cong \langle a_1 \rangle \perp \cdots \perp \langle a_n \rangle$. We define the Hasse Invariant of V with respect to $\mathfrak{p} \in \Omega_K$ as

$$S_{\mathfrak{p}}V = \prod_{1 \le i \le j \le n} (a_i, a_j)_{\mathfrak{p}}.$$

Remark 3

The Hasse invariant of a quadratic space V over a local field K only depends of the isometry class of V.

Proof. see [Milne, prop 6.7].

We can state the principal result of this section which gives us an answer to the above question:

Theorem 3.4

Let K be a global field and, for each $\mathfrak{p} \in \Omega_K$, suppose given $U_{\mathfrak{p}}$ regular quadratic spaces over $K_{\mathfrak{p}}$ with dim $U_{\mathfrak{p}} = n$. Then there exist V regular quadratic space over K with dim V = n such that $V_{\mathfrak{p}} \cong U_{\mathfrak{p}}$ for all $\mathfrak{p} \in \Omega_K$ if and only if the following holds

- 1. There exists $d_0 \in K^*$ such that $dU_{\mathfrak{p}} = d_0$ for all $\mathfrak{p} \in \Omega_K$.
- 2. For almost all $\mathfrak{p} \in \Omega_K$ we have $S_{\mathfrak{p}}U_{\mathfrak{p}} = 1$.

$$3. \prod_{\mathfrak{p}\in\Omega_K} S_{\mathfrak{p}} U_{\mathfrak{p}} = 1.$$

proof:

 (\Rightarrow) direct from the product formula and $d_0 = dV$.

 (\Leftarrow) We begin with a remark that will be useful for the rest of the proof.

Remark 4

If U, V are regular quadratic spaces over a local field, then they are isometric if and only if

$$\dim U = \dim V \qquad dU = dV \qquad SU = SV$$

Proof. (of the remark) see [O'Meara, 63:20].

if n = 1 the result follows taking $V \cong \langle d_0 \rangle$. Assume then $n \ge 2$.

Let T the subset of Ω_K which contains all the archimedean places of K and all the finite places \mathfrak{p} such that $S_{\mathfrak{p}}U_{\mathfrak{p}} = -1$. For each $\mathfrak{p} \in T$ we can write

$$U_{\mathfrak{p}} \cong \langle a_{1,\mathfrak{p}} \rangle \perp \cdots \perp \langle a_{n,\mathfrak{p}} \rangle$$

where $a_{i,\mathfrak{p}} \in K_{\mathfrak{p}}^*$, for all $1 \leq i \leq n$ and for all $\mathfrak{p} \in T$. Using the weak approximation theorem we can find $a_i \in K^*$ such that $|a_{i,\mathfrak{p}} - a_i|_{\mathfrak{p}}$ is small enough. Since $K_{\mathfrak{p}}^{*2}$ is an open subset of $K_{\mathfrak{p}}$ we can furthermore get $a_i \in a_{i,\mathfrak{p}}K_{\mathfrak{p}}^{*2}$ for all $\mathfrak{p} \in T$. Doing this for all $1 \leq i \leq n-1$ consider the quadratic space W such that

$$W \cong \langle a_1 \rangle \perp \cdots \perp \langle a_{n-1} \rangle \perp \langle a_1 \cdots a_{n-1} d_0 \rangle.$$

By this choice we have that $W_{\mathfrak{p}} \cong U_{\mathfrak{p}}$ for all $\mathfrak{p} \in T$, but this occurs in a bigger subset of Ω_K ; for instance, if we define $R = \{\mathfrak{p} \in \Omega_K | S_\mathfrak{p} W_\mathfrak{p} \neq S_\mathfrak{p} U_\mathfrak{p}\}$, then we have $W_\mathfrak{p} \cong U_\mathfrak{p}$ for all $\mathfrak{p} \in \Omega_K \setminus R$. If $R = \emptyset$ we are done. If not, R is a finite subset of Ω_K having an even number of elements. We can also see that $R = \{\mathfrak{p} \in \Omega_K | S_\mathfrak{p} W_\mathfrak{p} = -1\}$.

Claim: There exist P, P' quadratic planes such that dP = dP' and $P_{\mathfrak{p}} \cong P'_{\mathfrak{p}} \iff \mathfrak{p} \in R$.

for this we need the following lemma:

Lemma 2

Let K an algebraic number field, $b \in K^*$ and $T \subset \Omega_K$ finite. If T has an even number of elements and b does not become an square in $K_{\mathfrak{p}}$ for $\mathfrak{p} \in T$, then there exist $a \in K^*$ such that

$$(a,b)_{\mathfrak{p}} = \begin{cases} +1 & \mathfrak{p} \notin T \\ -1 & otherwise \end{cases}$$

Proof. For a proof of this Lemma see [O'Meara, 71:19] or [Milne, 6.13]. Applying this lemma for R and any $b \in K^*$ such that it is a non-square at $\mathfrak{p} \in R$, exist $a \in K^*$ such that

$$(a,b)_{\mathfrak{p}} = \begin{cases} +1 & \mathfrak{p} \notin R \\ -1 & \text{otherwise} \end{cases}$$

Take now

$$P \cong \langle 1 \rangle \perp \langle -b \rangle \text{ and} P' \cong \langle a \rangle \perp \langle -ab \rangle.$$

These two planes have the same discriminant and dimension, and computing their Hasse invariant we get

$$S_{\mathfrak{p}}P_{\mathfrak{p}} = (-1,b)_{\mathfrak{p}} \qquad S_{\mathfrak{p}}P'_{\mathfrak{p}} = (-1,b)_{\mathfrak{p}}(a,b)_{\mathfrak{p}},$$

hence $P_{\mathfrak{p}} \cong P'_{\mathfrak{p}} \iff \mathfrak{p} \notin R$, and we have proved the claim.

Consider $\mathfrak{p} \in R$. We have that $P'_{\mathfrak{p}} \perp U_{\mathfrak{p}} \cong (P \perp W)_{\mathfrak{p}}$ because the three invariants coincide, so there exists a representation $P'_{\mathfrak{p}} \longrightarrow (P \perp W)_{\mathfrak{p}}$.

If $\mathfrak{p} \notin R$ we have that $P_{\mathfrak{p}} \cong P'_{\mathfrak{p}}$ and there exists also a representation $P'_{\mathfrak{p}} \longrightarrow (P \perp W)_{\mathfrak{p}}$. The Hasse principle tells us that we get a global representation $P' \longrightarrow P \perp W$. Using Witt's Theorem there exist a regular quadratic space V over K such that

$$P' \perp V \cong P \perp W.$$

For the space V holds the following:

- 1. $dV = dW = d_0$ because dP = dP'.
- 2. For each $\mathfrak{p} \notin R$ we have $P_{\mathfrak{p}} \cong P'_{\mathfrak{p}}$ and hence $V_{\mathfrak{p}} \cong W_{\mathfrak{p}} \cong U_{\mathfrak{p}}$.
- 3. If $\mathfrak{p} \in R$ obviously $V_{\mathfrak{p}} \ncong W_{\mathfrak{p}}$, hence $S_{\mathfrak{p}}V_{\mathfrak{p}} = -S_{\mathfrak{p}}W_{\mathfrak{p}} = S_{\mathfrak{p}}U_{\mathfrak{p}}$ and this implies also that $V_{\mathfrak{p}} \cong U_{\mathfrak{p}}$.

We have then proved the theorem.

Corollary 3.2

Given an even number of places of an algebraic number field it is always possible to find a quaternion algebra which is ramified at exactly these places.

References

- [O'Meara] O'Meara, O.T., Introduction to Quadratic Forms, 117, Die Grundlehren der mathematischen Wissenshaften, Springer-Verlag, 1973.
- [Milne] Milne, J.S., *Class Field Theory* (v4.00), Available at www.jmilne.org/math/, 2008.