Quaternion Algebras over Global Fields

Eduardo Ocampo

June 3, 2008

Abstract

This is an expository work of the classification of Quaternion Algebras over algebraic number fields for the Forschungsseminar Sommersemester 08

1 Introduction

In this section I'll recall some results of the previous talks. Let K be a field with char $K \neq 2$ and let H be a quaternion algebra over K. We can find a basis of H of the form $\{1, i, j, i j\}$ such that $i^{2}=a, j^{2}=b, i j=-j i$ for some $a, b \in K^{*}$. We denote then $H=\left(\frac{a, b}{K}\right)$.

Example 1.1

Let K be a field. The K-algebra $\left(\frac{1,-1}{K}\right)$ is isomorphic to the matrix algebra $\operatorname{Mat}_{2}(K)$.
Let ${ }^{-}$) denotes the involution of H such that if $x=x_{0}+x_{1} i+x_{2} j+x_{3} i j$, then $\bar{x}=x_{0}-x_{1} i-x_{2} j-x_{3} i j$. Define

$$
\begin{aligned}
N(x)=x \cdot \bar{x} & \text { reduced norm } \\
\operatorname{Tr}(x)=x+\bar{x} & \text { reduced trace }
\end{aligned}
$$

as functions from H into K, for all $x \in H$. Furthermore, the reduced norm is a quadratic form of rank 4 over K with corresponding bilinear form $B(x, y)=\operatorname{Tr}(x \bar{y})$. The set of pure quaternion elements of a quaternion algebra $H=\left(\frac{a, b}{K}\right)$ is defined as

$$
H_{0}=\{x \in H \mid \operatorname{Tr}(x)=0\} .
$$

The following result gives us a characterization of H in terms of quadratic forms:

Proposition 1.1

Let H, H^{\prime} be quaternion algebras over a field K. Then the following are equivalent:

1. H and H^{\prime} are algebra isomorphic.
2. (H, N) and $\left(H^{\prime}, N^{\prime}\right)$ are isometric quadratic spaces.
3. $\left(H_{0},\left.N\right|_{H_{0}}\right)$ and $\left(H_{0}^{\prime},\left.N\right|_{H_{0}^{\prime}}\right)$ are isometric quadratic spaces.

We then turn to world of quadratic spaces in order to obtain some classifications in the case when the field K is a global field.

2 Basics on Quadratic Forms

Let (V, Q) be a quadratic space and a basis $\left\{v_{i}, \ldots, v_{n}\right\}$. The discriminant of V is defined as

$$
d V:=\operatorname{det}\left[B\left(v_{i}, v_{j}\right)\right] \quad \bmod K^{* 2} .
$$

If W is a subspace of V, we say that W splits V if there exist U subspace of V such that $V \cong W \perp U$ (here $B(W, U)=0$). It is clear that if $V \cong V_{1} \perp \cdots \perp V_{r}$, then $d v=d V_{1} \cdots d V_{r}$.
Let $a_{1}, \ldots, a_{n} \in K^{*}$. The notation $V \cong\left\langle a_{1}\right\rangle \perp \cdots \perp\left\langle a_{n}\right\rangle$ means that we have an orthogonal basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of V and $Q\left(v_{i}\right)=a_{i}$ for all i. In this case $d V=a_{1} \cdots a_{n}$.

Example 2.1

Let $H=\left(\frac{a, b}{K}\right)$ be a quaternion algebra. Then $H \cong\langle 1\rangle \perp\langle a\rangle \perp\langle b\rangle \perp\langle a b\rangle$ and hence $d H=1$.

Definition 2.1

Let (V, Q) be a quadratic space.

1. The space (V, Q) is called isotropic if Q represents 0 (i.e. exist a non-zero vector $v \in V$ s.t. $Q(v)=0)$.
2. The space (V, Q) is called regular if

$$
\{v \in V \mid B(v, V)=0\}=\{\overline{0}\}
$$

(in our case this is equivalent to say that B is non-degenerate)

Remark 1

Let (V, Q) be a regular quadratic space over a field $K, a \in K^{*}$. Then $a \in Q(V) \Longleftrightarrow$ $\langle-a\rangle \perp V$ is isotropic.

We finish this section by giving an elementary but useful lemma in order to characterize when a quaternion algebra is a matrix algebra.

Lemma 1

let K be a field, $a, b \in K^{*}$. Then the following are equivalent.

1. $\left(\frac{a, b}{K}\right) \cong\left(\frac{1,-1}{K}\right)$.
2. $\left(\frac{a, b}{K}\right)$ is not a division algebra.
3. $\left(\left(\frac{a, b}{K}\right), N\right)$ is isotropic.
4. $\left(\left(\frac{a, b}{K}\right)_{0}, N^{\prime}\right)$ is isotropic (here N^{\prime} is N restricted to $\left.\left(\frac{a, b}{K}\right)_{0}\right)$.
5. $\langle a\rangle \perp\langle b\rangle$ represents 1 .
6. $a \in N_{F / K}(F)$ where $F=K[\sqrt{b}]$.

3 Quadratic Forms over Global Fields

Let now K be a global field; for instance we suppose that K is an algebraic number field and everthing is equivalent in the function field case. Denote Ω_{K} the set of (non-trivial) places of K. A quadratic K-space (V, Q) is called isotropic at $\mathfrak{p} \in \Omega_{K}$ if the space $V_{\mathfrak{p}}:=\left(V \otimes_{K} K_{\mathfrak{p}}, Q\right)$ is isotropic.

We have then the first important result called Hasse Principle related to quadratic spaces:

Theorem 3.1

A regular quadratic space over a global field K is isotropic if and only if it is isotropic at all $\mathfrak{p} \in \Omega_{K}$.
and as a direct consecuence:

Theorem 3.2 (Hasse-Minkowski)

Let U, V regular quadratic spaces over a global field K. Then U is isometric to V if and only if $U_{\mathfrak{p}}$ is isometric to $V_{\mathfrak{p}}$ for all $\mathfrak{p} \in \Omega_{K}$.

Definition 3.1

Let H be a quaternion algebra over a global field K, and $\mathfrak{p} \in \Omega_{K}$. We say that H is ramified at \mathfrak{p} if $H_{\mathfrak{p}} \cong \mathbb{H}_{\mathfrak{p}}$ where $\mathbb{H}_{\mathfrak{p}}$ denotes the division algebra over $K_{\mathfrak{p}}$. If \mathfrak{p} is a real place one uses definite/indefinite instead of ramified/unramified.

Then we have our first classification theorem of quaternion algebras over global fields:

Theorem 3.3

Let K be an algebraic number field, H and H^{\prime} quaternion algebras over K. Then the following are equivalent.

1. $H \cong H^{\prime}$.
2. $H_{\mathfrak{p}} \cong H_{\mathfrak{p}}^{\prime}$ for all $\mathfrak{p} \in \Omega_{K}$.
3. H and H^{\prime} ramifies at the same places.

Definition 3.2

Let K be a local field. given $a, b \in K^{*}$, we define their Hilbert symbol :

$$
(a, b)= \begin{cases}+1 & \text { if } X^{2}-a Y^{2}-b Z^{2} \text { represents } 0 \\ -1 & \text { otherwise }\end{cases}
$$

Remark 2

Let $H=\left(\frac{a, b}{K}\right)$ defined over a global field and $\mathfrak{p} \in \Omega_{K}$. By lemma 1

$$
\begin{aligned}
H \text { is unramified at } \mathfrak{p} & \Longleftrightarrow H_{\mathfrak{p}} \text { is not a division algebra } \\
& \Longleftrightarrow X^{2}-a Y^{2}-b Z^{2} \text { represents } 0 \\
& \Longleftrightarrow+1=(a, b)_{\mathfrak{p}}:=(a, b) \text { in } K_{\mathfrak{p}} .
\end{aligned}
$$

Proposition 3.1 (Properties of the Hilbert Symbol)

Let $a, b, c \in K^{*}, \mathfrak{p} \in \Omega_{K}$.

1. (a) $(a, b c)_{\mathfrak{p}}=(a, b)_{\mathfrak{p}}(a, c)_{\mathfrak{p}}$
(b) $(a,-a)_{\mathfrak{p}}=1$
(c) $\left(a, b^{2}\right)_{\mathfrak{p}}=1$.
2. If \mathfrak{p} is a real place $(a, c)_{\mathfrak{p}}=-1$ if $a<0$ and $b<0$.
3. (a) $(a, b)_{\mathfrak{p}}=1$ if $a, b \in R_{\mathfrak{p}}^{*}$.
(b) $(a, \mathfrak{p})_{\mathfrak{p}}=\left(\frac{a}{\mathfrak{p}}\right)$ if $a \in R_{\mathfrak{p}}^{*}$.
4. $(a, b)_{\mathfrak{p}}=1$ for almost all $\mathfrak{p} \in \Omega_{K}$ and

$$
\prod_{\mathfrak{p} \in \Omega_{K}}(a, b)_{\mathfrak{p}}=1 . \quad \text { (The Product Formula) }
$$

Proof. see for example [Milne, lemma 6.6] or [O’Meara, Ł 63,71].

Corollary 3.1

Let H be a quaternion algebra over an algebraic number field K. Then H is ramified at an even number of places of K.

Definition 3.3

Let H be a quaternion algebra over an algebraic number field K. Define the (reduced) discriminant of H as

$$
D H:=\mathfrak{p}_{1} \cdots \mathfrak{p}_{r}
$$

where the $\mathfrak{p}_{i}^{\prime}$ s are exactly the places at which H ramifies.
There is a natural question: If we have $\mathcal{A}_{\mathfrak{p}}$ quaternion algebras for each $\mathfrak{p} \in \Omega_{K}$, is it posible to find H a quaternion algebra over K such that $H_{\mathfrak{p}} \cong \mathcal{A}_{\mathfrak{p}}$ for all $\mathfrak{p} \in \Omega_{K}$?

Definition 3.4

Let (V, Q) a regular quadratic space over a global field K and a representation of V as $V \cong\left\langle a_{1}\right\rangle \perp \cdots \perp\left\langle a_{n}\right\rangle$. We define the Hasse Invariant of V with respect to $\mathfrak{p} \in \Omega_{K}$ as

$$
S_{\mathfrak{p}} V=\prod_{1 \leq i \leq j \leq n}\left(a_{i}, a_{j}\right)_{\mathfrak{p}}
$$

Remark 3

The Hasse invariant of a quadratic space V over a local field K only depends of the isometry class of V.

Proof. see [Milne, prop 6.7].
We can state the principal result of this section which gives us an answer to the above question:

Theorem 3.4

Let K be a global field and, for each $\mathfrak{p} \in \Omega_{K}$, suppose given $U_{\mathfrak{p}}$ regular quadratic spaces over $K_{\mathfrak{p}}$ with $\operatorname{dim} U_{\mathfrak{p}}=n$. Then there exist V regular quadratic space over K with $\operatorname{dim} V=n$ such that $V_{\mathfrak{p}} \cong U_{\mathfrak{p}}$ for all $\mathfrak{p} \in \Omega_{K}$ if and only if the following holds

1. There exists $d_{0} \in K^{*}$ such that $d U_{\mathfrak{p}}=d_{0}$ for all $\mathfrak{p} \in \Omega_{K}$.
2. For almost all $\mathfrak{p} \in \Omega_{K}$ we have $S_{\mathfrak{p}} U_{\mathfrak{p}}=1$.
3. $\prod_{\mathfrak{p} \in \Omega_{K}} S_{\mathfrak{p}} U_{\mathfrak{p}}=1$.
proof:
(\Rightarrow) direct from the product formula and $d_{0}=d V$.
(\Leftarrow) We begin with a remark that will be useful for the rest of the proof.

Remark 4

If U, V are regular quadratic spaces over a local field, then they are isometric if and only if

$$
\operatorname{dim} U=\operatorname{dim} V \quad d U=d V \quad S U=S V
$$

Proof. (of the remark) see [O'Meara, 63:20].
if $n=1$ the result follows taking $V \cong\left\langle d_{0}\right\rangle$. Assume then $n \geq 2$.
Let T the subset of Ω_{K} which contains all the archimedean places of K and all the finite places \mathfrak{p} such that $S_{\mathfrak{p}} U_{\mathfrak{p}}=-1$. For each $\mathfrak{p} \in T$ we can write

$$
U_{\mathfrak{p}} \cong\left\langle a_{1, \mathfrak{p}}\right\rangle \perp \cdots \perp\left\langle a_{n, \mathfrak{p}}\right\rangle
$$

where $a_{i, \mathfrak{p}} \in K_{\mathfrak{p}}^{*}$, for all $1 \leq i \leq n$ and for all $\mathfrak{p} \in T$. Using the weak approximation theorem we can find $a_{i} \in K^{*}$ such that $\left|a_{i, \mathfrak{p}}-a_{i}\right|_{\mathfrak{p}}$ is small enough. Since $K_{\mathfrak{p}}^{* 2}$ is an open subset of $K_{\mathfrak{p}}$ we can furthermore get $a_{i} \in a_{i, \mathfrak{p}} K_{\mathfrak{p}}^{* 2}$ for all $\mathfrak{p} \in T$. Doing this for all $1 \leq i \leq n-1$ consider the quadratic space W such that

$$
W \cong\left\langle a_{1}\right\rangle \perp \cdots \perp\left\langle a_{n-1}\right\rangle \perp\left\langle a_{1} \cdots a_{n-1} d_{0}\right\rangle .
$$

By this choice we have that $W_{\mathfrak{p}} \cong U_{\mathfrak{p}}$ for all $\mathfrak{p} \in T$, but this occurs in a bigger subset of Ω_{K}; for instance, if we define $R=\left\{\mathfrak{p} \in \Omega_{K} \mid S_{\mathfrak{p}} W_{\mathfrak{p}} \neq S_{\mathfrak{p}} U_{\mathfrak{p}}\right\}$, then we have $W_{\mathfrak{p}} \cong U_{\mathfrak{p}}$ for all $\mathfrak{p} \in \Omega_{K} \backslash R$. If $R=\emptyset$ we are done. If not, R is a finite subset of Ω_{K} having an even number of elements. We can also see that $R=\left\{\mathfrak{p} \in \Omega_{K} \mid S_{\mathfrak{p}} W_{\mathfrak{p}}=-1\right\}$.

Claim: There exist P, P^{\prime} quadratic planes such that $d P=d P^{\prime}$ and $P_{\mathfrak{p}} \cong P_{\mathfrak{p}}^{\prime} \Longleftrightarrow$ $\mathfrak{p} \in R$.
for this we need the following lemma:

Lemma 2

Let K an algebraic number field, $b \in K^{*}$ and $T \subset \Omega_{K}$ finite. If T has an even number of elements and b does not become an square in $K_{\mathfrak{p}}$ for $\mathfrak{p} \in T$, then there exist $a \in K^{*}$ such that

$$
(a, b)_{\mathfrak{p}}= \begin{cases}+1 & \mathfrak{p} \notin T \\ -1 & \text { otherwise }\end{cases}
$$

Proof. For a proof of this Lemma see [O'Meara, 71:19] or [Milne, 6.13].
Applying this lemma for R and any $b \in K^{*}$ such that it is a non-square at $\mathfrak{p} \in R$, exist $a \in K^{*}$ such that

$$
(a, b)_{\mathfrak{p}}= \begin{cases}+1 & \mathfrak{p} \notin R \\ -1 & \text { otherwise }\end{cases}
$$

Take now

$$
\begin{aligned}
P & \cong\langle 1\rangle \perp\langle-b\rangle \quad \text { and } \\
P^{\prime} & \cong\langle a\rangle \perp\langle-a b\rangle .
\end{aligned}
$$

These two planes have the same discriminant and dimension, and computing their Hasse invariant we get

$$
S_{\mathfrak{p}} P_{\mathfrak{p}}=(-1, b)_{\mathfrak{p}} \quad S_{\mathfrak{p}} P_{\mathfrak{p}}^{\prime}=(-1, b)_{\mathfrak{p}}(a, b)_{\mathfrak{p}},
$$

hence $P_{\mathfrak{p}} \cong P_{\mathfrak{p}}^{\prime} \Longleftrightarrow \mathfrak{p} \notin R$, and we have proved the claim.
Consider $\mathfrak{p} \in R$. We have that $P_{\mathfrak{p}}^{\prime} \perp U_{\mathfrak{p}} \cong(P \perp W)_{\mathfrak{p}}$ because the three invariants coincide, so there exists a representation $P_{\mathfrak{p}}^{\prime} \longrightarrow(P \perp W)_{\mathfrak{p}}$.
If $\mathfrak{p} \notin R$ we have that $P_{\mathfrak{p}} \cong P_{\mathfrak{p}}^{\prime}$ and there exists also a representation $P_{\mathfrak{p}}^{\prime} \longrightarrow(P \perp W)_{\mathfrak{p}}$. The Hasse principle tells us that we get a global representation $P^{\prime} \longrightarrow P \perp W$. Using Witt's Theorem there exist a regular quadratic space V over K such that

$$
P^{\prime} \perp V \cong P \perp W .
$$

For the space V holds the following:

1. $d V=d W=d_{0}$ because $d P=d P^{\prime}$.
2. For each $\mathfrak{p} \notin R$ we have $P_{\mathfrak{p}} \cong P_{\mathfrak{p}}^{\prime}$ and hence $V_{\mathfrak{p}} \cong W_{\mathfrak{p}} \cong U_{\mathfrak{p}}$.
3. If $\mathfrak{p} \in R$ obviously $V_{\mathfrak{p}} \not \equiv W_{\mathfrak{p}}$, hence $S_{\mathfrak{p}} V_{\mathfrak{p}}=-S_{\mathfrak{p}} W_{\mathfrak{p}}=S_{\mathfrak{p}} U_{\mathfrak{p}}$ and this implies also that $V_{\mathfrak{p}} \cong U_{\mathfrak{p}}$.

We have then proved the theorem.

Corollary 3.2

Given an even number of places of an algebraic number field it is always possible to find a quaternion algebra which is ramified at exactly these places.

References

[O'Meara] O'Meara, O.T., Introduction to Quadratic Forms, 117, Die Grundlehren der mathematischen Wissenshaften, Springer-Verlag, 1973.
[Milne] Milne, J.S., Class Field Theory (v4.00), Available at www.jmilne.org/math/, 2008.

