
Quaternion Algebras over Global Fields

Eduardo Ocampo

June 3, 2008

Abstract

This is an expository work of the classification of Quaternion Algebras over

algebraic number fields for the Forschungsseminar Sommersemester 08

1 Introduction

In this section I’ll recall some results of the previous talks. Let K be a field with
char K 6= 2 and let H be a quaternion algebra over K. We can find a basis of H of
the form {1, i, j, ij} such that i2 = a, j2 = b, ij = −ji for some a, b ∈ K∗. We denote
then H =

(

a,b
K

)

.

Example 1.1

Let K be a field. The K-algebra
(

1,−1

K

)

is isomorphic to the matrix algebra Mat2(K).

Let ( ) denotes the involution of H such that if x = x0 + x1i + x2j + x3ij, then
x = x0 − x1i − x2j − x3ij. Define

N(x) = x · x reduced norm

Tr(x) = x + x reduced trace

as functions from H into K, for all x ∈ H . Furthermore, the reduced norm is a
quadratic form of rank 4 over K with corresponding bilinear form B(x, y) = Tr(xy).
The set of pure quaternion elements of a quaternion algebra H =

(

a,b
K

)

is defined as

H0 = {x ∈ H|Tr(x) = 0}.

The following result gives us a characterization of H in terms of quadratic forms:

Proposition 1.1
Let H, H ′ be quaternion algebras over a field K. Then the following are equivalent:

1. H and H ′ are algebra isomorphic.

2. (H, N) and (H ′, N ′) are isometric quadratic spaces.

3. (H0, N |H0
) and (H ′

0
, N |H′

0
) are isometric quadratic spaces.

We then turn to world of quadratic spaces in order to obtain some classifications in
the case when the field K is a global field.
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2 Basics on Quadratic Forms

Let (V, Q) be a quadratic space and a basis {vi, . . . , vn}. The discriminant of V is
defined as

dV := det[B(vi, vj)] mod K∗2.

If W is a subspace of V , we say that W splits V if there exist U subspace of V such
that V ∼= W ⊥ U (here B(W, U) = 0). It is clear that if V ∼= V1 ⊥ · · · ⊥ Vr, then
dv = dV1 · · · dVr.
Let a1, . . . , an ∈ K∗. The notation V ∼= 〈a1〉 ⊥ · · · ⊥ 〈an〉 means that we have an
orthogonal basis {v1, . . . , vn} of V and Q(vi) = ai for all i. In this case dV = a1 · · ·an.

Example 2.1

Let H =
(

a,b
K

)

be a quaternion algebra. Then H ∼= 〈1〉 ⊥ 〈a〉 ⊥ 〈b〉 ⊥ 〈ab〉 and hence

dH = 1.

Definition 2.1
Let (V, Q) be a quadratic space.

1. The space (V, Q) is called isotropic if Q represents 0 (i.e. exist a non-zero vector
v ∈ V s.t. Q(v) = 0).

2. The space (V, Q) is called regular if

{v ∈ V |B(v, V ) = 0} = {0}

(in our case this is equivalent to say that B is non-degenerate)

Remark 1

Let (V, Q) be a regular quadratic space over a field K, a ∈ K∗. Then a ∈ Q(V ) ⇐⇒
〈−a〉 ⊥ V is isotropic.

We finish this section by giving an elementary but useful lemma in order to charac-
terize when a quaternion algebra is a matrix algebra.

Lemma 1
let K be a field, a, b ∈ K∗. Then the following are equivalent.

1.
(

a,b
K

) ∼=
(

1,−1

K

)

.

2.
(

a,b
K

)

is not a division algebra.

3. (
(

a,b
K

)

, N) is isotropic.

4. (
(

a,b
K

)

0
, N ′) is isotropic (here N ′ is N restricted to

(

a,b
K

)

0
).

5. 〈a〉 ⊥ 〈b〉 represents 1.

6. a ∈ NF/K(F ) where F = K[
√

b].
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3 Quadratic Forms over Global Fields

Let now K be a global field; for instance we suppose that K is an algebraic number
field and everthing is equivalent in the function field case. Denote ΩK the set of
(non-trivial) places of K. A quadratic K-space (V, Q) is called isotropic at p ∈ ΩK if
the space Vp := (V ⊗K Kp, Q) is isotropic.

We have then the first important result called Hasse Principle related to quadratic
spaces:

Theorem 3.1
A regular quadratic space over a global field K is isotropic if and only if it is isotropic
at all p ∈ ΩK .

and as a direct consecuence:

Theorem 3.2 (Hasse-Minkowski)
Let U, V regular quadratic spaces over a global field K. Then U is isometric to V if
and only if Up is isometric to Vp for all p ∈ ΩK .

Definition 3.1
Let H be a quaternion algebra over a global field K, and p ∈ ΩK . We say that H is
ramified at p if Hp

∼= Hp where Hp denotes the division algebra over Kp. If p is a real
place one uses definite/indefinite instead of ramified/unramified.

Then we have our first classification theorem of quaternion algebras over global fields:

Theorem 3.3
Let K be an algebraic number field, H and H ′ quaternion algebras over K. Then the
following are equivalent.

1. H ∼= H ′.

2. Hp
∼= H ′

p
for all p ∈ ΩK .

3. H and H ′ ramifies at the same places.

Definition 3.2
Let K be a local field. given a, b ∈ K∗, we define their Hilbert symbol :

(a, b) =

{

+1 if X2 − aY 2 − bZ2 represents 0
−1 otherwise

Remark 2

Let H =
(

a,b
K

)

defined over a global field and p ∈ ΩK . By lemma 1

H is unramified at p ⇐⇒ Hp is not a division algebra

⇐⇒ X2 − aY 2 − bZ2 represents 0

⇐⇒ +1 = (a, b)p := (a, b) in Kp.

Proposition 3.1 (Properties of the Hilbert Symbol)
Let a, b, c ∈ K∗, p ∈ ΩK .
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1. (a) (a, bc)p = (a, b)p(a, c)p

(b) (a,−a)p = 1

(c) (a, b2)p = 1.

2. If p is a real place (a, c)p = −1 if a < 0 and b < 0.

3. (a) (a, b)p = 1 if a, b ∈ R∗
p.

(b) (a, p)p =
(

a
p

)

if a ∈ R∗
p
.

4. (a, b)p = 1 for almost all p ∈ ΩK and

∏

p∈ΩK

(a, b)p = 1. (The Product Formula)

Proof. see for example [Milne, lemma 6.6] or [O’Meara, ♮ 63,71].

Corollary 3.1
Let H be a quaternion algebra over an algebraic number field K. Then H is ramified
at an even number of places of K.

Definition 3.3
Let H be a quaternion algebra over an algebraic number field K. Define the (reduced)
discriminant of H as

DH := p1 · · · pr

where the p′
is are exactly the places at which H ramifies.

There is a natural question: If we have Ap quaternion algebras for each p ∈ ΩK , is it
posible to find H a quaternion algebra over K such that Hp

∼= Ap for all p ∈ ΩK?

Definition 3.4
Let (V, Q) a regular quadratic space over a global field K and a representation of V as
V ∼= 〈a1〉 ⊥ · · · ⊥ 〈an〉. We define the Hasse Invariant of V with respect to p ∈ ΩK

as
SpV =

∏

1≤i≤j≤n

(ai, aj)p.

Remark 3

The Hasse invariant of a quadratic space V over a local field K only depends of the

isometry class of V .

Proof. see [Milne, prop 6.7].
We can state the principal result of this section which gives us an answer to the above
question:

Theorem 3.4
Let K be a global field and, for each p ∈ ΩK , suppose given Up regular quadratic
spaces over Kp with dim Up = n. Then there exist V regular quadratic space over K

with dim V = n such that Vp
∼= Up for all p ∈ ΩK if and only if the following holds
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1. There exists d0 ∈ K∗ such that dUp = d0 for all p ∈ ΩK .

2. For almost all p ∈ ΩK we have SpUp = 1.

3.
∏

p∈ΩK

SpUp = 1.

proof:

(⇒) direct from the product formula and d0 = dV .
(⇐) We begin with a remark that will be useful for the rest of the proof.

Remark 4

If U, V are regular quadratic spaces over a local field, then they are isometric if and only

if

dim U = dim V dU = dV SU = SV

Proof. (of the remark) see [O’Meara, 63:20].
if n = 1 the result follows taking V ∼= 〈d0〉. Assume then n ≥ 2.
Let T the subset of ΩK which contains all the archimedean places of K and all the
finite places p such that SpUp = −1. For each p ∈ T we can write

Up
∼= 〈a1,p〉 ⊥ · · · ⊥ 〈an,p〉

where ai,p ∈ K∗
p
, for all 1 ≤ i ≤ n and for all p ∈ T . Using the weak approximation

theorem we can find ai ∈ K∗ such that |ai,p − ai|p is small enough. Since K∗2
p is an

open subset of Kp we can furthermore get ai ∈ ai,pK
∗2
p

for all p ∈ T . Doing this for
all 1 ≤ i ≤ n − 1 consider the quadratic space W such that

W ∼= 〈a1〉 ⊥ · · · ⊥ 〈an−1〉 ⊥ 〈a1 · · ·an−1d0〉.

By this choice we have that Wp
∼= Up for all p ∈ T , but this occurs in a bigger subset

of ΩK ; for instance, if we define R = {p ∈ ΩK |SpWp 6= SpUp}, then we have Wp
∼= Up

for all p ∈ ΩK \R. If R = ∅ we are done. If not, R is a finite subset of ΩK having an
even number of elements. We can also see that R = {p ∈ ΩK |SpWp = −1}.

Claim: There exist P, P ′ quadratic planes such that dP = dP ′ and Pp
∼= P ′

p ⇐⇒
p ∈ R.

for this we need the following lemma:

Lemma 2
Let K an algebraic number field, b ∈ K∗ and T ⊂ ΩK finite. If T has an even number
of elements and b does not become an square in Kp for p ∈ T , then there exist a ∈ K∗

such that

(a, b)p =

{

+1 p 6∈ T

−1 otherwise
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Proof. For a proof of this Lemma see [O’Meara, 71:19] or [Milne, 6.13].
Applying this lemma for R and any b ∈ K∗ such that it is a non-square at p ∈ R,
exist a ∈ K∗ such that

(a, b)p =

{

+1 p 6∈ R

−1 otherwise

Take now

P ∼= 〈1〉 ⊥ 〈−b〉 and

P ′ ∼= 〈a〉 ⊥ 〈−ab〉.

These two planes have the same discriminant and dimension, and computing their
Hasse invariant we get

SpPp = (−1, b)p SpP
′
p = (−1, b)p(a, b)p,

hence Pp
∼= P ′

p ⇐⇒ p 6∈ R, and we have proved the claim.

Consider p ∈ R. We have that P ′
p ⊥ Up

∼= (P ⊥ W )p because the three invariants
coincide, so there exists a representation P ′

p
−→ (P ⊥ W )p.

If p 6∈ R we have that Pp
∼= P ′

p and there exists also a representation P ′
p −→ (P ⊥ W )p.

The Hasse principle tells us that we get a global representation P ′ −→ P ⊥ W . Using
Witt’s Theorem there exist a regular quadratic space V over K such that

P ′ ⊥ V ∼= P ⊥ W.

For the space V holds the following:

1. dV = dW = d0 because dP = dP ′.

2. For each p 6∈ R we have Pp
∼= P ′

p
and hence Vp

∼= Wp
∼= Up.

3. If p ∈ R obviously Vp ≇ Wp, hence SpVp = −SpWp = SpUp and this implies also
that Vp

∼= Up.

We have then proved the theorem.

Corollary 3.2
Given an even number of places of an algebraic number field it is always possible to
find a quaternion algebra which is ramified at exactly these places.
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