
SHIMURA CURVES II

STEFAN KUKULIES

Abstract. These are the notes of a talk I gave at the number theory
seminar at University of Duisburg-Essen in summer 2008.

We discuss the adèlic description of quaternionic Shimura curves.
The adèlic description has four advantages over the classical description
of Shimura curves discussed in the previous talk. Namely, the adèlic
language is the right one in view towards the Langlands program, we
don’t need an integral structure, it makes certain adèlic actions on the
Shimura curve explicit and we can work uniformly over smaller fields of
definition.

Contents

1. The algebraic group G associated to a quaternion algebra 1
2. The space X 4
3. The Shimura curve M(G,X) 7
References 11

1. The algebraic group G associated to a quaternion algebra

Setup 1.1. We are given the following data:
• F a totally real number field of degree [F : Q] = n
• B/F a quaternion algebra, i. e. B/F is a central, simple algebra of

dimF B = 4
• B/F splits at exactly one infinite place (not used until Section 2)

Example 1.2. B = M2(F ).

Definition 1.3 (B× considered as algebraic group). The algebraic group
G′/F representing the functor

(F -algebras) −→ (groups)
R 7−→ (B ⊗F R)×

is called the algebraic group over F given by B×.

Example 1.4. For F = Q and B = M2(Q), we have B× = GL2(Q) so that
G′ = GL2,Q is the general linear group.
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Remark 1.5. We show that G′/F exists. Let B/F be a quaternion algebra.
⇒ B =

(a,b
F

)
, i. e. ∃ a, b ∈ F such that as an F -algebra B = F [α, β] is

generated by two elements α, β ∈ B subject to the relations

α2 = a, β2 = b, αβ = −βα.
Let γ ∈ B be an arbitrary element.
⇒ we can write γ in a unique way as

γ = x · 1 + y · α+ z · β + w · αβ
with x, y, z, w ∈ F .

This suggests that G′ is a subscheme of A4
F by

G′ ⊂ A4
F , γ 7→ γ := (x, y, z, w).

To really get the units B× of B, we need an algebraic description of them.
Consider the reduced norm of B

nrd(γ) = γ · γ̄ = x2 − ay2 − bz2 + abw2︸ ︷︷ ︸
=:f(x,y,z,w)∈F [x,y,z,w]

where γ̄ = x · 1 − y · α − z · β − w · αβ is the conjugation on B. We easily
see that

γ ∈ B× ⇐⇒ f(x, y, z, w) = nrd(γ) 6= 0.
Hence, we set

G′ := SpecF [x, y, z, w]f(x,y,z,w)

' SpecF [x, y, z, w, u]/
(
u · f(x, y, z, w)− 1

)
.

The algebraic map defined over F

G′ ×G′ → G′,
(
γ, γ′

)
7→ γ · γ′

makes G′ an algebraic group over F which fulfills the required property

G′(R) = (B ⊗F R)×

for any F -algebra R.

Example 1.6. If B = M2(F ), then nrd(γ) = det(γ) so that G′ = GL2,F .

We want that the group G′/F lives over Q. Therefore, we take the Weil
restriction of G′. References for the Weil restriction are [BLR90] and [Po03].

Definition 1.7 (The Weil restriction of G′). For the algebraic group G′/F
given by B/F , let

G := ResF/Q G′

be the Weil restriction of G′ from F to Q, i. e. G is the algebraic group over
Q that represents the functor

(Q-algebras) −→ (groups)
R 7−→ G′(R⊗Q F ) = (B ⊗Q R)×
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Remark 1.8. Since G′ is affine, G will also be affine. We have

G(Q) = B× and G(F ) =
[F :Q]∏
i=1

B×.

In the literature, the group G is often denoted by “ResF/Q B×”.

Example 1.9 (For the Weil restriction – the real torus). We discuss an
example for the Weil restriction of an affine algebraic group. Since a quater-
nionic example would be too long, we discuss the easier example of

Gm,C = Spec C[U, V ]/(UV − 1)

restricted to R. Hence, let

S = ResC/R Gm,C

be the real torus. This example is not only easier, it will also be useful
later on. Now, take the R-basis {1, i} of C and introduce new variables
U1, U2, V1, V2. Set

U = U1 · 1 + U2 · i and V = V1 · 1 + V2 · i.

and express the defining equation for Gm,C in the new variables with respect
to the basis {1, i}, i. e.

UV − 1 = (U1 + U2 · i)(V1 + V2 · i)− 1
= (U1V1 − U2V2 − 1)︸ ︷︷ ︸

=:f1

·1 + (U1V2 + U2V1)︸ ︷︷ ︸
=:f2

·i.

Then f1, f2 are the defining equations for S, i. e.

S = Spec R[U1, U2, V1, V2]/(U1V1 − U2V2 − 1, U1V2 + U2V1)
' Spec R[X,Y, T ]/

(
T (X2 + Y 2)− 1

)
where the last isomorphism is given by

X 7→ U1, Y 7→ U2, T 7→ V 2
1 + V 2

2 .

From the second represenatation of S, one easily sees that S fulfills the
properties of the Weil restriction. In particular, we have S(R) = C× and
S(C) = C× × C×.

It is a little bit more difficult to determine the group law of the Weil
restriction. This we will not discuss. In our example of the real torus, the
group law with respect to the second representation is given by

S× S −→ S(
(x, y, t), (x′, y′, t′)

)
7−→ (xx′ − yy′, xy′ + yx′, tt′)

which is clearly an algebraic map.

Remark 1.10. If F = Q, then G = G′.
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2. The space X

Assumption 2.1. B/F splits at exactly one infinite place of F . This as-
sumption ensures that we will get a Shimura curve. If B splits at more than
one infinite place, then we will get a higher-dimensional Shimura variety.

Remark 2.2. Let {τ1, . . . , τn} be the set of real embeddings τi : F ↪→ R of
F . Then by the above assumption, the real points of the group G are

G(R) = (B ⊗Q R)×

=
(
B ⊗F (F ⊗Q R)

)×
=

∏
τi:F ↪→R

(B ⊗τi R)×

= GL2(R)×H× × · · · ×H×︸ ︷︷ ︸
[F :Q]−1 times

where H =
(−1,−1

R
)

denotes the Hamiltionian quaternions over R.

Remark 2.3. G(R) acts on the set HomR(S, GR) by conjugation, i. e. the
map

G(R)×HomR(S, GR) −→ HomR(S, GR)(
r , h(−)

)
7−→ r · h(−) · r−1

defines a group action.

Definition 2.4 (The space X). We define the space

X := G(R)-orbit of h : S→ GR

where the map h ∈ HomR(S, GR) is given by

h : S −→ GR, x+ y · i 7−→
((

x −y
y x

)
, 1, . . . , 1

)

Remark 2.5. The action ofG(R) onX factors through the quotient GL2(R).
GL2(R) also acts on the space P1(C) − P1(R) by fractional linear transfor-
mations. In fact, these two spaces are the same.

Proposition 2.6. There is an isomorphism of GL2(R)-sets

X ' P1(C)− P1(R)

sending the map h to i. In particular, X has a decomposition X = X+qX−
where X+ denotes the component containing h so that X+ is identified with
the upper half-plane while X− corresponds to the lower half-plane.
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Proof. We have the following identifications of GL2(R)-sets.

Step 1: X and representations of S.
There is a 1-1-correspondence

X
1:1←→ HomR(S,GL2,R)

h 7−→ pr ◦ h[
s 7→

(
h(s), 1, . . . , 1

)]
←− [ h

where pr : GR → GL2,R is the projection. The G(R)-action by conju-
gation on X translates into the GL2(R)-action by conjugation on the set
HomR(S,GL2,R).

Step 2: Representations of S and complex structures.
There is a 1-1-correspondence

HomR(S,GL2,R) 1:1←→


complex structures on
V = R2, i. e. maps
J ∈ EndR(V ) which sat-
isfy J2 = −1


h 7−→ J = h(i) ∈ GL2(R) ⊂ EndR(V )[

x+ yi 7→ x+ yJ
]
←− [ J

The GL2(R)-action by conjugation on the left side becomes the GL2(R)-
action by conjugation on EndR(V ) on the right side.

Step 3: Complex structures and Hodge structures.
There is a 1-1-correspondence

complex structures on
V = R2, i. e. maps
J ∈ EndR(V ) which sat-
isfy J2 = −1

 1:1←→


real Hodge structures
on V , i. e. decomposi-
tions VC = V + ⊕ V −

with V + = V −


J 7−→

(
Eig(JC,+i),Eig(JC,−i)

)(
(+i) · idV + ⊕ (−i) · idV −

)∣∣
V
←− [ (V +, V −)

where the endomorphism (+i) · idV +⊕(−i) · idV − on VC is restricted to V via
the canonical map V ↪→ V ⊗R C = VC. The GL2(R)-action by conjugation
on the complex structures becomes the GL2(R)-action as endomorphisms of
VC on the real Hodge structures, i. e.

γ · (V +, V −) =
(
γ(V +), γ(V −)

)
for any γ ∈ GL2(R), where γ(V ±) denotes the image of V ± under γ con-
sidered as an element of GL2(C) = AutC(VC). Since γ is a real map, it
will commute with complex conjugation so that it really maps a real Hodge
structure to a real Hodge structure.
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Step 4: Hodge structures and nonreal lines.
There is a 1-1-correspondence

real Hodge structures
on V , i. e. decomposi-
tions VC = V + ⊕ V −

with V + = V −

 1:1←→


nonreal lines in VC,
i. e. 1-dimensional sub-
spaces L ⊂ VC satisfy-
ing L 6= L


(V +, V −) 7−→ V +

(L,L) ←− [ L

The GL2(R)-action as endomorphisms on the real Hodge structures becomes
the GL2(R)-action as endomorphisms on the nonreal lines, i. e.

γ · L = γ(L)

where γ(L) is the image of L under γ ∈ GL2(R) ⊂ GL2(C).

Step 5: Lines and projective space.
There is a 1-1-correspondence

{nonreal lines in VC}
1:1←→ P1(C)− P1(R)

L = C ·
(
x
y

)
←→ [x : y]

In fact, P1(C) is by definition the set of lines in VC while P1(R) is given by
the real lines.

The action of GL2(R) as endomorphisms on the lines in VC corresponds
to the action of GL2(R) on P1(C) by linear fractional transformations. More
precisely, let γ =

(
a b
c d

)
∈ GL2(R) and L = C ·

(
x
y

)
a line. Then

γ(L) = C ·
(
ax+ by

cx+ dy

)
and this corresponds to [ax+ by : cx+ dy]. If we write [x : y] = [z : 1] (note
that [x : 0] = [1 : 0] is a real point), then we see that γ acts on z ∈ C as the
fractional linear transformation az+b

cz+d , as claimed.

Step 6: Following the path of h.
If we follow the way of our given map

h : S −→ GR, x+ y · i 7−→
((

x −y
y x

)
, 1, . . . , 1

)
through the above identifications, then we see that, in the 1st step, h is sent
to the map

pr ◦ h : S→ GL2(R), x+ yi 7→
(
x −y
y x

)
.

In the 2nd step, we get the complex structure

J = pr ◦ h(i) =
( 0 −1

1 0

)
∈ GL2(R) ⊂ EndR(V )
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whose eigenspaces are

Eig(J,+i) = C ·
(

1
−i

)
and Eig(J,−i) = C ·

(
1
i

)
giving the real Hodge structure

(V +, V −) =

(
C ·
(

1
−i

)
,C ·

(
1
i

))
in the 3rd step. The 4th step sends this structure to the line

L = V + = C ·
(

1
−i

)
which corresponds in the 5th step to the point

[1 : −i] or
1
−i

= i

of P1(C)− P1(R).
This proves the proposition. �

3. The Shimura curve M(G,X)

Let Af denote the ring of finite adèles over Q. Consider the product
space X × G(Af ) and let K ⊂ G(Af ) be a compact open subgroup. Then
there is a right action of K on X ×G(Af ) by right multiplication on G(Af )
and by acting trivially on X. Further, we have a left action of G(Q) on
X × G(Af ) by G(Q) acting on G(Af ) by left multiplication and acting on
X by conjugation. More precisely, the two actions are given by the map

G(Q)×
(
X ×G(Af )

)
×K −→ X ×G(Af )(

q, (x, a), k
)

7−→ q · (x, a) · k := (qx, qak)

where qx = q · x · q−1 is the action of q on x by conjugation as described
in Section 2. The space of double cosets of these two actions will be our
Shimura curve.

Definition 3.1 (The Shimura curve associated to K). Let K ⊂ G(Af ) be
a compact open subgroup. Then

MK(G,X) := G(Q)
∖
X ×G(Af )

/
K

is called the Shimura curve given by (G,X,K). Since (G,X) is determined
by our quaternion algebra B/F , we also call MK(G,X) the quaternionic
Shimura curve with respect to B and K.

Example 3.2. If B = M2(Q), then MK(G,X) = GL2(Q)
∖
X×GL2(Af )

/
K.
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Remark 3.3. The real topological group

G(R) = GL2(R)×H× × · · · ×H×

has two connected components, since GL2(R) consists of two components
(positive and negative determinant) while H× is connected (the reduced
norm on H is always positive, in fact nrd(γ) = 0⇔ γ = 0).

Let G(R)+ be the connected component of 1. So, an element of G(R) is
in G(R)+ if and only if its determinant in the first component is positive.
We set G(Q)+ := G(Q) ∩G(R)+.

The following theorem shows the connection of the adèlic description of a
Shimura curve with the classical description as a quotient Γ\H of the upper
half-plane H by some arithmetic group Γ. Recall that in Section 2, we
identified the upper half-plane H with X+, the component of X containing
the function h.

Theorem 3.4 (Adèlic and classical description of Shimura curves). Let C be
a (finite) set of representatives for the double coset space G(Q)+\G(Af )/K.
Then there is a canonical isomorphism of sets

MK(G,X) '
∐
g∈C

Γg\X+

where Γg := gKg−1 ∩G(Q)+.

Proof. The proof is divided into several steps.
Step 1: G(Q)+\G(Af )/K is finite.

Let Gad := G/Z where Z is the center of G. For example in our case, Z ⊂ G
is a torus, since quaternion algebras are central over their base field. Note
that since G is reductive, this definition of the adjoint group Gad coincides
with the general one. Now, Gad(R) has only finitely many (namely two)
connected components (see the remark above).
⇒ Gad(R)+\Gad(R) is finite, where Gad(R)+ is the connected component

of one.
⇒ G(Q)+\G(Q) is finite, since the map G(Q)+\G(Q) ↪→ Gad(R)+\Gad(R)

is injective.
⇒ G(Q)+\G(Af )/K → G(Q)\G(Af )/K is a quasi-finite map, i. e. all fibers

are finite.
⇒ it is enough to show that G(Q)\G(Af )/K is finite.
The finiteness of G(Q)\G(Af )/K is an application of strong approximation,
see [Mi03, p.55-59].

Step 2: The map G(Q)+
∖
X+×G(Af )→ G(Q)

∖
X×G(Af ) is a bijection.

Consider the map

G(Q)+
∖
X+ ×G(Af ) −→ G(Q)

∖
X ×G(Af )

[x, a] 7−→ [x, a]

and let [x, a] ∈ G(Q)
∖
X ×G(Af ).
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⇒ ∃ q ∈ G(Q), ∃ x+ ∈ X+ : x = qx+, since G(R) acts transitively on X
and G(Q) ⊂ G(R) is dense by real approximation.

⇒ [x+, q−1a] = [qx+, a] = [x, a] in G(Q)
∖
X ×G(Af ).

Hence, the map is surjective with [x+, q−1a] being a preimage of [x, a].
Now, let be (x, a), (x′, a′) ∈ X+ ×G(Af ) with [x, a] = [x′, a′] in the coset

space G(Q)
∖
X ×G(Af ).

⇒ ∃ q ∈ G(Q) : (qx, qa) = (x′, a′) in X ×G(Af ).
⇒ q ∈ G(Q)+, since qx = x′ and x, x′ ∈ X+ implies that q does not

interchange X+ and X−.
⇒ [x, a] = [x′, a′] in G(Q)+

∖
X+ ×G(Af ).

So, the map is injective.
This step implies that we may replace G(Q) and X by G(Q)+ and X+,

respectively.

Step 3: The canonical map and its surjectivity.
Consider the map∐

g∈C
Γg\X+ −→ G(Q)+

∖
X+ ×G(Af )

/
K

[x] 7−→ [x, g]

for x ∈ X+ and g ∈ C. Let [x, a] ∈ G(Q)+
∖
X+ ×G(Af )

/
K.

⇒ ∃ g ∈ C, ∃ q ∈ G(Q+), ∃ k ∈ K : a = qgk, since C is a set of
representatives for the double cosets.

⇒ [x, a] = [q−1x, gk] = [q−1x, g].
⇒ [q−1x] ∈ Γg\X+ is a preimage of [x, a] = [q−1x, g].
So, the map is surjective.

Step 4: The injectivity on each connected component.
Consider the map

Γg\X+ −→ G(Q)+
∖
X+ ×G(Af )

/
K

[x] 7−→ [x, g]

for some g ∈ C and let [x], [x′] ∈ Γg\X+ with [x, g] = [x′, g].
⇒ ∃ q ∈ G(Q)+, ∃ k ∈ K : (qx, qgk) = (x′, g) in X+ ×G(Af ).
⇒ q = gk−1g−1 ∈ gKg−1 ∩G(Q)+ = Γg.
⇒ [x] = [qx] = [x′] in Γg\X+.
So, the map is injective for each g ∈ C.

Step 5: Disjointness of the images of the components.
Let [x] ∈ Γg\X+ and [x′] ∈ Γg′\X+ for g, g′ ∈ C. Assume that [x, g] = [x, g′]
in G(Q)+

∖
X+ ×G(Af )

/
K.

⇒ ∃ q ∈ G(Q)+, ∃ k ∈ K : (qx, qgk) = (x′, g′), in particular qgk = g′.
⇒ [g] = [g′] in G(Q)+

∖
G(Af )

/
K.

⇒ g = g′, since g, g′ ∈ C are representatives of the double cosets.
So, if g 6= g′, then the images of Γg\X+ and Γg′\X+ are disjoint. In partic-
ular, the canonical map is injective.
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This shows the bijectivity of the canonical map. �

Example 3.5. Let B = M2(Q) so that G = GL2,Q, and let

K := K(N) :=
∏

` prime

{(
a b
c d

)
∈ SL2(Z`)

∣∣∣( a bc d ) ≡ ( 1 0
0 1

)
mod `ord`(N)

}
where ord`(N) is the order of ` in N, i. e. it is the unique integer n such that
`n| N , but, `n+1 6 | N . Then

MK(G,X) '
∐
g∈C

gΓ(N)g−1
∖
X+ '

∐
g∈C

Γ(N)\H

where Γ(N) =
{(

a b
c d

)
∈ SL2(Z)

∣∣( a b
c d

)
≡
(

1 0
0 1

)
mod N

}
is the standard

modular subgroup of level N . Hence, MK(G,X) is the union of several
copies of the (non-compact) modular curve Y (N) = Γ(N)\H, parameteriz-
ing elliptic curves with a symplectic level-N -structure.

Remark 3.6. IfK is sufficiently small, then Γg is torsion-free andMK(G,X)
will be an algebraic curve by a theorem of Bailey and Borel, see [Mi05, chap-
ter 3].

If K ′ ⊂ K are both sufficiently small, then the induced map

MK′(G,X) −→MK(G,X)

is a regular map. Hence, we get a projective system of algebraic curves.

Definition 3.7 (The Shimura curve as projective system). The projective
system of algebraic curves

M(G,X) :=
{
MK(G,X)

}
K

where K runs through sufficiently small subgroups of G(Af ) is called the
Shimura curve given by (G,X). Since (G,X) is uniquely determined by
B/F , we call M(G,X) also the quaternionic Shimura curve given by B.

Remark 3.8 (The G(Af )-action on the Shimura curve). The group G(Af )
acts on M(G,X) from the right by right multiplication. More precisely, an
element g ∈ G(Af ) gives a map

MK(G,X)→Mg−1Kg(G,X), [x, a] 7→ [x, ag]

for any K.

Remark 3.9 (Existence of canonical models). Deligne has shown that the
Shimura curve M(G,X) can be defined over a number field, i. e. there is
a common number field E(G,X), such that all the curves MK(G,X) and
all the maps MK′(G,X) → MK(G,X) are defined over the number field
E(G,X), see [De79].
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Remark 3.10 (Moduli interpretation). For F = Q, the quaternionic Shimura
curves M(G,X) have a moduli interpretation. For F 6= Q, no moduli inter-
pretation exists, see [Mi03, chapter 5].

Some final words about the literature. The most accessible sources are
the papers of Milne, [Mi03] and [Mi05]. Most things I learned from these
two expositions. The standard source is the work of Deligne, [De71] and
[De79]. But there, the topic is treated in much more generality.
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