Trace formula and Brandt matrices
 Talk in the Forschungsseminar on Quaternion Algebras

Ralf Butenuth

2008-06-12

Contents

Contents 1
1 Introduction 1
2 Local Case 2
2.1 First Case: H a division quaternion algebra 2
2.2 Second Case: $H \cong M_{2}(K)$ a matrix algebra 2
3 Global Case: The Trace formula 2
4 An application: Brandt matrices 4
References 5

1 Introduction

Let H / K be an quaternion algebra, $K=\operatorname{Quot}(R), L / K$ a separable extention of degree 2. B an R-order of L, O an R-order of H.

Definition 1.1 An embedding $f: L \rightarrow H$ is a maximal embedding of B in O if $f(L) \cap$ $B=f(B)$.

As an example, let $L=K(h), h \in H$. Then by Skolem-Noether $C(h)=\left\{x h x^{-1} \mid x \in H^{\star}\right\}$ is in bijection with the set of embeddings of L in H and $C(h, B)=\left\{x h x^{-1} \mid x \in\right.$ $\left.H^{\star}, K\left(x h x^{-1}\right) \cap O=x B x^{-1}\right\}$ is in bijection with the set of maximal embeddings of B in O.
Let $N(O)=\left\{x \in H^{\star} \mid x O x^{-1}=O\right\}$ be the normalizer of O and $G \subseteq N(O)$ a subgroup. For $x \in H$ let $\tilde{x}: y \mapsto x y x^{-1}$ be the inner automorphism associated to x and let $\tilde{G}:=\{\tilde{x} \mid x \in G\}$.
Then $C(h, B)$ is stable under the left action of \tilde{G}. This justifies the second definition:
Definition 1.2 A class of maximal embeddings of B in O modulo G is a \tilde{G}-orbit of maximal embeddings of B in O.

The goal of this talk is to proof a trace formula for the number of classes of maximal embeddings where K is a number field and O is an Eichler Order.

2 Local Case

Let K be a local field. We have to distinguish between two different cases: The case where H is a division quaternion algebra and the case where H is a matrix algebra. In the global setting this will correspond to the places p where H_{p} is ramified (first case) and those where H_{p} is unramified (second case).

2.1 First Case: H a division quaternion algebra

From Adam's talk we know that $H \cong\left(L^{\prime}, \pi\right)$ where L^{\prime} is the unramified seperable quadratic extention of K. Let w be the map $w: H^{\star} \rightarrow \mathbb{Z}, h \mapsto w(h):=v(n(h))$. Then $O:=\left\{h \in H^{\star} \mid w(h) \geqslant 0\right\} \cup\{0\}$ is the unique maximal order, hence the unique Eichler order of H.
Let

$$
\left(\frac{L}{\pi}\right):= \begin{cases}-1 & \text { if } L / K \text { is unramified } \\ 0 & \text { if } L / K \text { is ramified }\end{cases}
$$

be the local Artin symbol.
Theorem 2.1 If B is a maximal order, then if $m(B, G)$ denotes the number of maximal embeddings of B in O modulo G we have

$$
m(B, G)= \begin{cases}1 & \text { if } G=N(O) \\ 1-\left(\frac{L}{\pi}\right) & \text { if } G=O^{\star}\end{cases}
$$

If B is not maximal, than it can't be maximal embedded in O.

2.2 Second Case: $H \cong M_{2}(K)$ a matrix algebra

Let O be a maximal order of H and O^{\prime} an Eichler order of level (π) of H.
Let

$$
\left(\frac{B}{\pi}\right):= \begin{cases}\left(\frac{L}{\pi}\right) & \text { if } B \text { is maximal } \\ 1 & \text { otherwise }\end{cases}
$$

be the local Eichler symbol.
Theorem 2.2 The number of maximal embeddings of B in O modulo O^{\star} is 1. The number of maximal embeddings of B in O^{\prime} modulo G is

$$
\begin{cases}1+\left(\frac{B}{\pi}\right) & \text { if } G=O^{\prime \star}, \\ 0 \text { or } 1 & \text { if } G=N\left(O^{\prime}\right)\end{cases}
$$

Remark 2.3 This theorem showes that B can't be maximal embedded in O^{\prime} if and only if B is maximal and L / K is unramified.

3 Global Case: The Trace formula

Let K be a number field, $R=O_{K}, O$ an Eichler order of H of level N, S a finite set of places satisfying
(a) $\{$ infinite places $\} \subset S$
(b) S satisfies the Eichler condition (There is a place $p \in S$ where H_{v} / K_{v} is unramified).
(c) $\{p \mid N\} \cap S=\varnothing$

Let X denote the set of all places of K.
The discriminant of O can be writen as $D N$ with

$$
D:=\prod_{p \notin S, p \in \operatorname{Ram}(H)}(p) .
$$

The main goal of my talk is the following theorem:
Theorem 3.1 (Trace formula) Let $m_{p}:=m_{p}\left(D, N, B, O^{\star}\right)$ be the number of maximal embeddings of B_{p} in O_{p} modulo O_{p}^{\star} for all $p \notin S .\left(I_{i}\right), 1 \leqslant i \leqslant h$ a system of representatives of classes of left ideals of O and $O^{(i)}=O_{r}\left(I_{i}\right)$ the right order of I_{i}. Let $m_{O^{\star}}^{(i)}$ be the number of maximal embeddings of B in $O^{(i)}$ modulo $0^{(i)^{\star}}$. Then

$$
\sum_{i=1}^{h} m_{O^{\star}}^{(i)}=h(B) \prod_{p \notin S} m_{p}
$$

where $h(B)$ is the class number of B.
Remark 3.2 The product on the right hand side is finite. We have

$$
\prod_{p \notin S} m_{p}=\prod_{p \mid D} m_{p} \prod_{p \mid N} m_{p}=\prod_{p \mid D}\left(1-\left(\frac{B}{p}\right)\right) \prod_{p \mid N}\left(1+\left(\frac{B}{p}\right)\right)
$$

where $\left(\frac{B}{p}\right)$ is the global Eichler Symbol defined as:

$$
\left(\frac{L}{p}\right)= \begin{cases}1 & \text { if } p \text { splits in } L \\ -1 & \text { if } p \text { is inert in } L \\ 0 & \text { if } p \text { ramifies in } L\end{cases}
$$

and

$$
\left(\frac{B}{p}\right)= \begin{cases}\left(\frac{L}{p}\right) & \text { for } p \in S \text { or } B_{p} \text { maximal } \\ 1 & \text { otherwise }\end{cases}
$$

We will proof the trace formula in a more general setting:
Let G_{p} be groups with $O_{p}^{\star} \subseteq G_{p} \subseteq N\left(O_{p}\right)$ for all $p \notin S$ and let $G_{p}:=H_{p}^{\star}$ for $p \in S$. We suppose that $G_{p}=O_{p}^{\star}$ for all but finitly many p. Let $G_{\mathbb{A}}:=\prod_{p \in X} G_{p} \subseteq H_{\mathbb{A}}^{\star}$ be the adelic version of the G_{p} 's and let $G:=G_{\mathbb{A}} \cap H^{\star}$.
Let $O^{(i)}, 1 \leqslant i \leqslant t$ be a system of representatives of Eichler orders of level N. In Björns talk we had a disjoint union decomposition:

$$
H_{\mathbb{A}}^{\star}=\coprod_{i=1}^{t} N\left(O_{\mathbb{A}}\right) x_{i} H^{\star}
$$

and with $O_{\mathbb{A}}^{(i)}:=x_{i}^{-1} O_{\mathbb{A}} x_{i}$ we have $O^{(i)}=H \cap O_{\mathbb{A}}^{(i)}$. Let $G_{\mathbb{A}}^{(i)}:=x_{i}^{-1} G_{\mathbb{A}} x_{i}$ and $G^{(i)}:=$ $H \cap G_{\mathbb{A}}^{(i)}$. Let $H^{(i)}:=N\left(O_{\mathbb{A}}^{(i)}\right) \cap H^{\star}, n_{G}^{(i)}:=\operatorname{card}\left(G_{\mathbb{A}}^{(i)} \backslash N\left(O_{\mathbb{A}}^{(i)}\right) / H^{(i)}\right)$ and $h_{G}(B):=$ $\operatorname{card}\left(B_{\mathbb{A}}^{\prime} \backslash L_{\mathbb{A}}^{\star} / L^{\star}\right)$ with $B_{\mathbb{A}}^{\prime}=B_{\mathbb{A}} \cap G_{\mathbb{A}}$.
Then we can proof the following theorem:

Theorem 3.3 Let $m_{p}=m_{p}(D, N, B, G)$ be the number of maximal embeddings of B_{p} in O_{p} modulo G_{p} for all $p \notin S$. Let $m_{G}^{(i)}$ be the numer of maximal embeddings of B in $O^{(i)}$ modulo $G^{(i)}$. Then

$$
\sum_{i=1}^{t} n_{G}^{(i)} m_{G}^{(i)}=h_{G}(B) \prod_{p \notin S} m_{p}
$$

It is not so hard to see that Theorem 3.3 implies Theorem 3.1.

4 An application: Brandt matrices

Let N be a rational prime and H the quaternion algebra over \mathbb{Q} wich is ramified at N and ∞. Let O be a fixed maximal order of H and let $\left\{I_{1}, \ldots, I_{n}\right\}$ be a system of representatives of classes of left ideals of $O, O^{(i)}=O_{r}\left(I_{i}\right)$ the right order of I_{i}. Then $\Gamma_{i}=O^{(i)^{\star}} / \mathbb{Z}^{\star}$ is a discrete subgroup of $(H \otimes \mathbb{R})^{\star} / \mathbb{R}^{\star} \cong \mathrm{SO}_{3}(\mathbb{R})$, wich is compact, so Γ_{i} is finite. We let $w_{i}=\left|\Gamma_{i}\right|$. Then Eichlers mass formula states

$$
\sum_{i=1}^{n} \frac{1}{w_{i}}=\frac{N-1}{12}
$$

Let $M_{i j}:=I_{j}^{-1} I_{i}$ be the product ideal. It is a left ideal of $O^{(j)}$ with right order $O^{(i)}$. Let $n\left(M_{i j}\right)$ denote the unique rational number such that $\frac{n(b)}{n\left(M_{i j}\right)}$ are integers with no common factor for all $b \in M_{i j}$. We let

$$
f_{i j}:=\frac{1}{w_{j}}=\sum_{b \in M_{i j}} e^{2 \pi i\left(\frac{n(b)}{n\left(M_{i j}\right)}\right) \tau}=\sum_{m \geqslant 0} B_{i j}(m) q^{m}
$$

This is a modular form of weight 2 for $\Gamma_{0}(N)$.
Definition 4.1 The m-th Brandt-Matrix is $B(m):=\left(B_{i j}(m)\right)_{1 \leqslant i, j \leqslant n}$.
Using the trace formula we can compute $\operatorname{Trace}(B(m))$ in terms of the Hurwitz class numer:
For B an order of discriminant $-d$ and rank 2 over \mathbb{Z} we set $h(d)=|\operatorname{Pic}(B)|$ and $u(d)=\left|B^{\star} / \mathbb{Z}^{\star}\right|$. For $D>0$ we set

$$
H(D):=\sum_{d f^{2}=-D} \frac{h(d)}{u(d)}
$$

and

$$
H_{N}(D)= \begin{cases}0 & \text { if } N \text { splits in } O_{-D}=: O \\ H(D) & \text { if } N \text { is inert in } O \\ \frac{1}{2} H(D) & \text { if } N \text { ramifies in } O \text { and } N \text { doesn't divide the conductor of } O \\ H_{N}\left(\frac{D}{N^{2}}\right) & \text { if } N \text { divides the conductor of } O\end{cases}
$$

Further let $H_{N}(0):=\frac{N-1}{24}$.
Then we can show the following theorem:

Theorem 4.2

$$
\operatorname{Trace}(B(m))=\sum_{s \in \mathbb{Z}, s^{2} \leqslant 4 m} H_{N}\left(4 m-s^{2}\right)
$$

For a proof, see chapter 1 of Gross' paper.

References

[Gr] Benedict H. Gross Heights and the Special Values of L-series, Canadian Mathematical Society, Conference Proceedings, Volume 7 (1987)
[Vi] Marie-France Vignéras Arithmétique des Algèbres de Quaternions, Springer-Verlag, Lecture Notes in Mathematics, Volume 800 (1980)

