Cohomological mod ℓ modular forms over $Q(i)$

Rebecca Torrey

Department of Mathematics, King's College London, University of London

Goal

To investigate the expected correspondence between mod ℓ modular forms and mod ℓ Galois representations over imaginary quadratic fields.

Serre's Conjecture

In 1987, Serre made the following conjecture in [7]. Suppose

$$
\rho: G_{\mathbb{Q}}=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{\ell}\right)
$$

is continuous, irreducible and odd. Then ρ is "modular", i.e., ρ arises from a normalized cuspidal eigenform f in the sense that

1. $\operatorname{tr}\left(\rho\left(\right.\right.$ Frob $\left.\left._{p}\right)\right)=$ eigenvalue of f at p; and
2. $\operatorname{det}\left(\rho\left(\operatorname{Frob}_{p}\right)\right)=\varepsilon(p) p^{k-1}$
for all $p \nmid N \ell$, where N, k and ε are the level, weight and character (respectively) of f.
Serre then gives a refinement of this conjecture in which he specifies the minimal level $N(\rho)$ and weight $k(\rho)$ of f (each depending only on ρ) and such that $\ell \nmid N(\rho)$ and $k(\rho) \geq 2$.

Generalization to number fields

Buzzard, Diamond and Jarvis give an extension of Serre's conjecture to totally real fields in their forthcoming paper [3]. They provide an explicit recipe detailing for which weights V one expects to find a $\bmod \ell$ Galois representation. Given a representation ρ, they define, for each prime \mathfrak{p} dividing ℓ, a set of representations $W_{\mathfrak{p}}(\rho)$ depending only on ρ restricted to the inertia group at \mathfrak{p}. They then set

$$
W(\rho)=\left\{\otimes_{\overline{\mathbb{F}}_{\ell}} V_{\mathfrak{p}} \mid V_{\mathfrak{p}} \in W_{\mathfrak{p}}(\rho)\right\} .
$$

They conjecture that if ρ is modular, then

$$
W(\rho)=\{V \mid \rho \text { is modular of weight } V\} .
$$

In [5], Dembélé, Diamond and Roberts provide computational evidence for this conjecture.
I am investigating what happens in the imaginary quadratic case. I hope to provide computational evidence for an analogous relationship in this situation. To that end, I have written code to compute cohomological $\bmod \ell$ modular forms over $\mathbb{Q}(i)$.

Modular Forms

We define a mod ℓ modular form for $K=\mathbb{Q}(i)$ of level \mathfrak{n} and Serre weight V to be a non-zero cohomology class $v \in H^{2}\left(\Gamma_{0}(\mathfrak{n}), V\right)$, which is a simultaneous eigenvector for all the Hecke operators T_{q}.
Borel-Serre duality [2] gives an isomorphism
$H^{2}\left(\Gamma_{0}(\mathfrak{n}), V\right) \xrightarrow{\sim} H_{0}\left(\Gamma_{0}(\mathfrak{n}), S t \otimes V\right)$,
where $S t$ denotes the Steinberg module. My code is actually computing simultaneous eigenvectors in the homology group $H_{0}\left(\Gamma_{0}(\mathfrak{n}), S t \otimes V\right)$.

Steinberg module and

 modular symbolsFollowing Ash in [1], we define the Steinberg module in terms of universal minimal modular symbols. Consider the set of formal $\mathbb{\mathbb { F }}_{\ell}$-linear sums of symbols $[v]=\left[v_{1}, v_{2}\right]$ where the v_{i} are unimodular vectors in \mathcal{O}_{K}^{2}. Mod out by the $\overline{\mathbb{F}}_{\ell}$-module generated by the following elements:

1. $\left[v_{2}, v_{1}\right]+\left[v_{1}, v_{2}\right]$;
2. $[v]=\left[v_{1}, v_{2}\right]$ whenever $\operatorname{det}(v)=0$; and
3. $\left[v_{1}, v_{3}\right]-\left[v_{1}, v_{2}\right]-\left[v_{2}, v_{3}\right]$,
where the v_{i} again run over all unimodular vectors in \mathcal{O}_{K}^{2} We take this quotient module as the definition of the Steinberg module $S t$.

Computation of modular forms

With the Steinberg module written in terms of modula symbols, we can use methods of Cremona [4] et al. to compute our $\bmod \ell$ modular forms.
Manin symbols provide a computationally friendly descrip tion of modular symbols. In order to see the equivalence between these spaces, we follow the algebraic approach used by Wiese [8], adjusting some particular arguments to adapt the strategy to the $K=\mathbb{Q}(i)$ case.
My code uses these Manin symbols to compute the homology space $H_{0}\left(\Gamma_{0}(\mathfrak{n}), S t \otimes V\right)$. The action of the Hecke operators on this space is then computed by converting back to modular symbols, computing the action of $T_{\mathfrak{q}}$ and then converting back to Manin symbols via the usual continued fraction convergents method.

Serre weights

For simplicity, we assume ℓ is inert and let \mathfrak{p} be the prime above ℓ. We let $k_{\mathfrak{p}}=\mathcal{O}_{K} / \mathfrak{p}$ and $S_{\mathfrak{p}}$ be the set of embeddings $k_{\mathfrak{p}} \hookrightarrow \overline{\mathbb{F}}_{\ell}$. A Serre Weight is an irreducible $\overline{\mathbb{F}}_{\ell^{-}}$ representation of

$$
G=G L_{2}\left(\mathcal{O}_{K} / \ell \mathcal{O}_{K}\right) .
$$

Such representations are of the form

$$
V_{\vec{a}, \vec{b}}=\bigotimes_{\tau \in S_{\mathfrak{p}}}\left(\operatorname{det}^{a_{\tau}} \otimes_{k_{\mathfrak{p}}} \operatorname{Sym}^{b_{\tau}} k_{\mathfrak{p}}^{2}\right) \otimes_{\tau} \overline{\mathbb{F}}_{\ell},
$$

where each of the a_{τ} and b_{τ} are integers and $0 \leq b_{\tau} \leq$ $\ell-1$. Furthermore, we may assume that $0 \leq a_{\tau} \leq \ell-1$ for each $\tau \in S_{\mathfrak{p}}$ and (to guarantee the representations are inequivalent) that $a_{\tau}<\ell-1$ for some τ.
In the code, we represent $\operatorname{Sym}^{b_{T}} k_{\mathfrak{p}}^{2}$ as the space of homogeneous polynomials of degree b_{τ} in two variables with coefficients in $k_{\mathfrak{p}}$, equipped with the natural action of $\mathrm{GL}_{2}\left(\mathcal{O}_{K}\right)$

Modular of weight V

We say that a continuous, irreducible representation

$$
\rho: G_{K} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{\ell}\right)
$$

is modular of Serre weight V if $H^{2}\left(\Gamma_{0}(\mathfrak{n}), V\right)\left[\mathfrak{m}_{\rho}\right] \neq 0$, where

$$
\left.\mathfrak{m}_{\rho}=\left\langle T_{\mathfrak{q}}-\operatorname{tr}\left(\rho\left(\text { Frob }_{\mathfrak{q}}\right)\right)\right| \mathfrak{q} \text { prime }\right\rangle
$$

is the maximal ideal of the Hecke algebra associated to ρ. So a representation ρ is modular of weight V if the corresponding system of eigenvalues shows up in our computed forms for that weight.

References

[1] A. Ash, "Unstable Cohomology of SL(n, \mathcal{O})", Journal of Algebra 167 (1994) 330-342
[2] A. Borel and J.-P. Serre, "Corners and Arithmetic Groups", Commentarii Mathematici Helvetici 48 (1973) 436-491.
[3] K. Buzzard, F. Diamond and F. Jarvis, "On Serre's Conjecture for Mod ℓ Galois Representations Over Totally Real Fields", preprint.
[4] J. Cremona, "Hyperbolic Tessellations, Modular Symbols, and Elliptic Curves over Complex Quadratic Fields", Compositio Mathematica 51 (1984), 275-323
[5] L. Dembélé, F. Diamond and D. Roberts, "Numerical Examples and Evidence for Serre's Conjecture over Totally Real Fields", preprint.
[6] PARI/GP, version 2.3.1, Bordeaux, 2005, http://pari.math.u-bordeaux.fr/.
[7] J.-P. Serre, "Sur les représentations modulaires de degré 2 de $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ ", Duke Math. J. 54 (1987) 179-230 [8] G. Wiese, "Modular Forms of Weight One Over Finite Fields", Ph.D. thesis, Universiteit Leiden (2005).

