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Abstract. We present an explicit set of matrices giving the action of the Hecke

operators T (p), Tj(p
2) on Siegel modular forms.

Introduction

It is well-known that the space of elliptic modular forms of weight k has a basis of
simultaneous eigenforms for the Hecke operators, and the Fourier coefficients of an
eigenform (and hence the eigenform) are completely determined by its eigenvalues
and first Fourier coefficient. In the theory of Siegel modular forms, the role of the
Hecke operators is not yet completely understood, thus there are many avenues
open for conjecture and exploration, including computational exploration. The
purpose of this note is to present an explicit set of matrices giving the action of the
Hecke operators on Siegel modular forms, with the goal of facilitating computational
exploration. (This construction also yields an explicit set of matrices giving the
action of Hecke operators on Jacobi modular forms; we remark on this further at
the end of this note.)

Definitions and results

For F a Siegel modular form of degree n and p a prime, we define the Hecke
operator T (p) by

F |T (p) = pn(k−n−1)/2
∑
M

F |
(

1
pIn

In

)
M

where M runs over a complete set of coset representatives for (Γ′ ∩ Γ)\Γ, with
Γ = Spn(Z) and

Γ′ =
(
pIn

In

)
Γ
(

1
pIn

In

)
.
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Similarly, for 1 ≤ j ≤ n, we define Tj(p2) by

F |Tj(p2) =
∑
M

F |


1
pIj

In−j

pIj
In−j

M

where M runs over a complete set of coset representatives for (Γ′j ∩ Γ)\Γ; here

Γ′j =


pIj

In−j
1
pIj

In−j

Γ


1
pIj

In−j

pIj
In−j

 .

In [3], we determine the action of Hecke operators on Fourier coefficients of a
Siegel modular form by first describing a complete set of coset representatives for
the Hecke operators. We index the cosets using lattices; the coset representatives
are then explicitly described except for a choice of G ∈ GLn(Z) associated to each
lattice. There are infinitely many possible choices for each G; in this note we make
an explicit choice for each G.

We first construct matrices for Tj(p2) (and for the averaged operators T̃j(p2)
introduced in [3]); then we do the same for T (p).

For Tj(p2), we construct these G as follows. For (nonnegative) integers r0, r2
with r0 + r2 ≤ j and r1 = j− r0− r2, we call P a partition of type (r0, r2) for (n, j)
if P is an ordered partition

({d1, . . . , dr0}, {b1, . . . , br1}, {a1, . . . , ar2}, {c1, · · · , cn−j})

of {1, 2, . . . , n}. (Note that if some ri = 0 or n− j = 0, a set in the partition could
be empty.) Given a partition P of type (r0, r2), we let GP ⊆ GLn(Z) consist of
all matrices G = (G0, G1, G2, G3) constructed as follows. G0 is the n × r0 matrix
with `, t-entry 1 if ` = dt, and 0 otherwise. G1 is an n × r1 matrix with `, t-entry
β`t where β`t = 1 if ` = bt, β`t = 0 if ` < bt or ` = ai (some i) or ` = bi (some
i 6= t), and otherwise β`t ∈ {0, 1, . . . , p− 1}. G′2 is an n× r2 matrix with `, t-entry
α`t where α`t = 1 if ` = at, α`t = 0 if ` < at or ` = ai (some i 6= t), and otherwise
α`t ∈ {0, 1, . . . , p − 1}. G′′2 is an n × r2 matrix with `, t-entry δ`t where δ`t = 0 if
` 6= di (any i), and otherwise δ`t ∈ {0, 1, . . . , p − 1}. G2 = G′2 + pG′′2 . G3 is an
n × (n − j) matrix with `, t-entry γ`t where γ`t = 1 if ` = ct, γ`t = 0 if ` < ct or
` = ai or bi (some i) or ` = ci (some i 6= t), and otherwise γ`t ∈ {0, 1, . . . , p− 1}.

Note that (G0, G1, G
′
2, G3) is a (column) permutation of an integral lower trian-

gular matrix with 1’s on the diagonal, and thus is an element of GLn(Z). Also, it
is easy to see that there is an elementary matrix E so that

(G0, G1, G
′
2, G3)E = (G0, G1, G

′
2 + pG′′2 , G3) = G,

and so G ∈ GLn(Z). (After proving Theorem 1, we describe G−1 as a product of
four explicit matrices.)
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We let Gr0,r2 = ∪PGP where P varies over all partitions of type (r0, r2). We set

Dr0,r2 =


Ir0

pIr1

p2Ir2

In−j

 .

Also, we let Yr0,r2 be the set of all (integral) matrices of the form
Y0 Y2 0 Y3

p tY2 Y1

0
tY3


where Y0 is symmetric, r0 × r0, with entries varying modulo p2, Y1 is symmetric,
r1 × r1, with entries varying modulo p, Y2 is r0 × r1 with entries varying modulo
p, and Y3 is r0 × (n − j) with entries varying modulo p. We let Y ′r0,r2

be those
matrices in Yr0,y2 that satisfy the additional condition p - detY1 (which is trivially
satisfied if r1 = 0).

Theorem 1. Given a degree n Siegel modular form F , 1 ≤ j ≤ n,

F |Tj(p2) =
∑
M

F |


1
pIj

In−j

pIj
In−j

M

where

M =
(
D Y

D−1

)(
G−1

tG

)
varies so that for some r0, r2 with r0 + r2 ≤ j, D = Dr0,r2 , Y ∈ Y ′r0,r2

, and
G ∈ Gr0,r2 . Also, with

T̃j(p2) = pj(k−n−1)
∑

0≤t≤j

[
n− t
j − t

]
p

Tt(p2)

where
[

m
r

]
p

=
∏r−1

i=0
pm−i−1
pr−i−1 ,

F |T̃j(p2) = pj(k−n−1)
∑
M

F |


1
pIj

In−j

pIj
In−j

M

where

M =
(
D Y

D−1

)(
G−1

tG

)
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varies so that for some r0, r2 with r0 + r2 ≤ j, D = Dr0,r2 , Y ∈ Yr0,r2 , and
G ∈ Gr0,r2 .

Proof. As mentioned above, in Proposition 2.1 of [3] we found a complete set of
coset representatives indexed by lattices (Ω,Λ1) where, for Λ a fixed lattice of rank
n, Ω varies subject to pΛ ⊆ Ω ⊆ 1

pΛ, and Λ1 varies over all codimension n − j
subspaces of Λ∩Ω/p(Λ+Ω). With {Λ : Ω} denoting the invariant factors of Ω in Λ
and r0 the multiplicity of the invariant factor p, r2 the multiplicity of the invariant
factor 1

p , the action of the coset representatives corresponding to (Ω,Λ1) is given
by the matrices (

D Y
D−1

)(
G−1

tG

)
where D = Dr0,r2 , Y varies over Y ′r0,r2

, and G = G(Ω,Λ1) is any change of basis
matrix so that, relative to a fixed basis (x1, . . . , xn) for Λ,

Ω = ΛGD−1

(
pIj

In−j

)
, Λ1 = ΛG

 0r0

Ir1

0


where r1 = j − r0 − r2. (Thus only those Ω occur where r0 + r2 ≤ j.) So we need
to show that such a pair (Ω,Λ1) corresponds to a unique G ∈ Gr0,r2 . We do this by
constructing all (Ω,Λ1) for each pair of parameters (r0, r2), simultaneously building
a partition P and making choices of α`t, β`t, γ`t, δ`t so that with G constructed
according to our recipe above, we can take G for G(Ω,Λ1).

Notice that when pΛ ⊆ Ω ⊆ 1
pΛ, the Invariant Factor Theorem (81:11 of [5])

tells us we have compatible decompositions:

Λ = Λ0 ⊕ Λ′1 ⊕ Λ2,

Ω = pΛ0 ⊕ Λ′1 ⊕
1
p

Λ2.

On the other hand, given Λ, such an Ω is determined by Ω′ = Λ2 + pΛ and (pΛ′1 ⊕
Λ2) + pΩ′. Also, in Λ∩Ω/p(Λ + Ω), Λ2 = 0, so Λ1 can be chosen so that in Ω′/pΩ′,
Λ1 ⊆ pΛ′1 ⊆ pΛ.

So to begin our construction of Ω,Λ1 and G = G(Ω,Λ1), in Λ/pΛ we choose a
dimension r2 subspace C

′
; let (v′1, . . . , v

′
r2

) be a basis for C
′
. Each v′t is a linear

combination over Z/pZ of the xi; by adjusting the v′t we can assume

v′t = xat +
∑
`>at

α`tx`

where a1, . . . , ar2 and distinct and α`t = 0 if ` = ai (some i 6= t). Let α`t ∈
{0, 1, . . . , p− 1} be a preimage of α`t.

Now let Ω′ be the preimage in Λ of C
′
. In Ω′/pΩ′ we will construct a dimension

n− r0 subspace C so that dim(C ∩ pΛ) = n− r0 − r2, distiguishing a dimension r1



EXPLICIT MATRICES FOR HECKE OPERATORS ON SIEGEL MODULAR FORMS 5

subspace pΛ1 of C ∩ pΛ. We begin by choosing pΛ1 to be a dimension r1 subspace
of pΛ; let pu1, . . . , pur1 be a basis for pΛ1. Since pxai = 0 in Ω′/pΩ′, we can adjust
the put so that

put = pxbt
+
∑
`>bt

β`tpx`

where b1, . . . , br1 are distinct, bt 6= ai (any i), and β`t = 0 if ` = ai (some i) or
` = bi (some i 6= t). Let β`t ∈ {0, 1, . . . , p− 1} be a preimage of β`t.

Now extend pΛ1 to a dimension n−r0−r2 subspace pΛ′1 of pΛ in Ω′/pΩ′. Extend
(pu1, . . . , pur1) to a basis

(pu1, . . . , pur1 , pw1, . . . , pwn−j)

for pΛ′1 so that
pwt = pxct

+
∑
`>ct

γ`tpx`,

where c1, . . . , cn−j are distinct, ct 6= ai, bi (any i), and γ`t = 0 if ` = ai (some i),
or ` = bi (some i 6= t). Let γ`t ∈ {0, 1, . . . , p− 1} be a preimage of γ`t.

Now we extend pΛ′1 to a dimension n − r0 space C so that the dimension of
C ∩ pΛ is n− r0 − r2 = r1 + n− j, and we extend (pu1, . . . , pw1, . . . ) to a basis

(pu1, . . . , pur1 , pw1, . . . , pwn−j , pv1, . . . , pvr2)

for C. Taking d1, . . . , dr0 so that

({d1, . . . , dr0}, {b1, . . . , br1}, {a1, . . . , ar2}, {c1, . . . , cn−j})

is a partition of {1, . . . , n}, we can take

vt = v′t +
r0∑

m=1

δmtpxdm

for some δmt; let δmt ∈ {0, 1, . . . , p− 1} be a preimage of δmt.
Now let pΩ be the preimage in Ω′ of C. So with

ut = xbt
+
∑
`>bt

β`tx` (1 ≤ t ≤ r1),

vt = xat
+
∑
`>at

α`tx` + p
∑
m

δmtxdm
(1 ≤ t ≤ r2),

wt = xct +
∑
`>ct

γ`tx` (1 ≤ t ≤ n− j),

the vectors

(pxd1 , . . . , pxdr0
, u1, . . . , ur1 ,

1
p
v1, . . . ,

1
p
vr2 , w1, . . . , wn−j)
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form a basis for Ω, and (u1, . . . , ur1) is a basis for Λ1 in Λ ∩ Ω/p(Λ + Ω). �

Remark. Given G ∈ GP as above, G−1 = E1E2E3E4 where the Ei are n × n
matrices constructed as follows. E1 has i, i-entry 1 (1 ≤ i ≤ n); for 1 ≤ ` ≤ r0, E1

has `, r0 + t-entry −βd`t (1 ≤ t ≤ r1), `, r0 + r1 + t-entry −αd`t− pδd`t (1 ≤ t ≤ r2),
`, r0 + r1 + r2 + t-entry −γd`t (1 ≤ t ≤ n − j), and all other entries 0. So for
1 ≤ t ≤ n− j, column r0 + r1 + r2 + t of GE1 has a 1 in row ct, and zeros elsewhere.
E2 has i, i-entry 1 (1 ≤ i ≤ n); for 1 ≤ ` ≤ n− j, E2 has r0 +r1 +r2 + `, r0 + t-entry
−βc`t (1 ≤ t ≤ r1), r0 + r1 + r2 + `, r0 + r1 + t-entry −αc`t (1 ≤ t ≤ r2), and zeros
elsewhere. Thus for 1 ≤ t ≤ r1, column r0 + t of GE1E2 has a 1 in row bt, and
zeros elsewhere. E3 has i, i-entry 1 (1 ≤ i ≤ n); for 1 ≤ ` ≤ r1, 1 ≤ t ≤ r2, E3

has r0 + `, r0 + r1 + t-entry −αb`t and zeros elsewhere. Thus GE1E2E3 = tE4 is a
permutation matrix; E4 has 1 as its `, d`-entry (1 ≤ ` ≤ r0), 1 as its r0 + `, b`-entry
(1 ≤ ` ≤ r1), 1 as its r0+r1+`, a`-entry (1 ≤ ` ≤ r2), 1 as its r0+r1+r2+`, c`-entry
(1 ≤ ` ≤ n− j), and zeros elsewhere. So GE1E2E3E4 = I.

We follow a similar procedure to construct matrices for T (p): For 0 ≤ r ≤
n, we let Gr be the set of matrices G so that for some ordered partition P =
({d1, . . . , dr}, {a1, . . . , an−r}) of {1, 2, . . . , n}, for 1 ≤ t ≤ r, column t of G has 1
in row dt and zeros elsewhere, and for 1 ≤ t ≤ n − r, the `, r + t-entry of G is α`t

where α`t is 1 if ` = at, α`t = 0 if ` < at or ` = ai (some i 6= t), and otherwise
α`t ∈ {0, 1, . . . , p− 1}. (So G ∈ GLn(Z) with G−1 = E1E2 where E1 has i, i-entry
1 (1 ≤ i ≤ n), `, r + t-entry −αd`t, with zeros elsewhere, and E2 has t, dt-entry 1
for 1 ≤ t ≤ r, r + t, at-entry 1 for 1 ≤ t ≤ n − r, and zeros elsewhere.) Let Yr be

the collection of matrices
(
Y

0

)
where Y varies over integral r × r, symmetric

matrices modulo p, and let Dr =
(
Ir

pIn−r

)
.

Theorem 2. Given a degree n Siegel modular form F ,

F |T (p) = pn(k−n−1)/2
∑
M

F |
(

1
pIn
d In

)
M

where

M =
(
D Y

D−1

)(
G−1

tG

)
varies so that for some r, 0 ≤ r ≤ n, D = Dr, Y ∈ Yr, and G ∈ Gr.

Proof. Using Proposition 3.1 of [3], we only need to show that as G varies over Gr,
Ω = ΛGpD−1

r varies once over all lattices Ω where pΛ ⊆ Ω ⊆ Λ, [Λ : Ω] = pr. So,
similar to the proof of Theorem 1, we construct all the Ω as well as a specific basis
for each Ω.

Let C be a dimension n − r subspace of Λ/pΛ. Choose a basis v1, . . . , vn−r so
that

vt = xat
+
∑
`>at

α`tx`
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where a1, . . . , an−r are distinct, α`t = 0 if ` = ai (some i 6= t); for each α`t, take
a preimage α`t ∈ {0, 1, . . . , p − 1}. Then with ({d1, . . . , dr}, {a1, . . . , a + n− r})
an ordered partition of {1, 2, . . . , n} and G constructed according to our recipe
preceding Theorem 2, we have Ω = ΛGpD−1

r . �

Remark. In [6] we discuss how a particular subgroup of Spn(Z) acts on Jacobi forms
on f : H(n−m) × Cn−m,m → C. From this we see that for 1 ≤ j ≤ n−m,

f |Tj(p2) =
∑
M

f |


1
pIj

In−j

pIj
In−j

M

where

M =
(
D Y

D−1

)(
G−1

tG

)
varies so that for some r0, r2 with r0 + r2 ≤ j, D = Dr0,r2 , Y ∈ Y ′r0,r2

, and G ∈ GP
where P is a partition of type (r0, r2) so that {n−m+ 1, . . . , n} ⊆ {c1, . . . , cn−j}
(with the ci arranged in ascending order). When n − m < j ≤ n, the operator
Tj(p2) changes the index, as does T (p), and the matrices giving the action of these
operators is a bit more complicated; explicit matrices for these operators are given
in [6].
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