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Background
1 Definition

Consider the hyperbolic upper half-planeH = {x+ iy ∈ C |y > 0} equipped with the metric
ds2 = y−2

(

dx2+dy2
)

and measuredµ = y−2dxdy. Let Γ be a co-finite, non co-compact Fuch-
sian group, i.e.Γ is a discrete subgroup of PSL2(R) = SL2(R)/{±1} such that the quotient
M = Γ\H has finite hyperbolic area but is not compact (it has at least one cusp).
A Maass waveform (cusp form) is a square-integrable real-analytic function onΓ\H which is an

eigenfunction of the Laplace-Beltrami operator∆ = y2
(

∂ 2

∂x2 + ∂ 2

∂y2

)

. I.e. φ ∈C2(H) is said to be
aMaass waveformif it satisfies the following conditions:

(∆+λ )φ (z) = 0,λ =
1
4

+R2 > 0, (1)

φ (γz) = φ (z) ,∀γ ∈ Γ, ∀z∈ H, (2)
∫

Γ\H
|φ |2dµ < ∞. (3)

It is known that for congruence subgroups a functionφ satisfying 1.-3. is automatically cuspidal,
i.e. φ (x+ iy) → 0 asy→ ∞ and has a Fourier expansion

φ (z) = ∑
n6=0

cnκn(y)e(nx)

whereκn(y) =
√

yKiR(2π |n|y) ande(x) = e2π ix.

2 Motivation

The Laplace-Beltrami operator∆ can be interpreted as a stationary Schrödinger operator and
Maass waveforms correspond to bound quantum eigenstates onM . The semi-classical limit
(h̄ → 0) corresponds toλ → ∞. Since the classical billiard system onM is strongly chaotic,
the properties of Maass waveforms and their eigenvalue distribution for largeλ are objects of
interest in the study of so-called „quantum chaos“.
Although generic Maass waveforms are (seemingly) transcendental in their nature, there are
special cases which also has a more number theoretical interpretation. These special cases, CM-
forms, exists only on congruence subgroups together with non-trivial characters and both their
spectral parameters and Fourier coefficients can be explicitly computed.

3 Some generalizations of Maass waveforms

If χ : Γ → C is a character we can replace (2) by

φ (γz) = χ (γ)φ (z) (2’)

and in general, ifk ∈ R andv : Γ → C is a multiplier system of weightk for Γ (hereΓ is the
inverse image of the natural projection ofΓ in SL2(R)) we can replace (2) by

φ (γz) = jγ (z)kv(γ)φ (z) (2”)

and (1) by

(∆k +λ )φ (z) = 0,λ =
1
4

+R2 > 0 (1”)

where j(a b
c d)

(z) = eiArg(cz+d) and∆k = ∆− iyk ∂
∂x.

We can also loosen up the condition (3) which implies some type of growth-bounds at infinity
(i.e. cuspidality ofφ for congruenceΓ if λ > 0). The first step would be to allow for polynomial
growth at infinity. This is achieved by for exampleEisenstein series E(z;s) which belongs to
the continuous spectrum of∆. Here

E (z;s) = ys+ϕ (s)y1−s+O
(

e−εy
)

, asy→ 0

for someε > 0. We can also allow exponential growth. LetPφ (z) be a polynomial inq= e(z) =
e2π iz . If φ satisfies (1) and (2) and

φ (z) = Pφ (z)+O
(

e−εy
)

, asy→ ∞ (3”’)

for someε > 0 we say thatφ is aweak Maass waveform.

Algorithm
4 The core algorithm consists of four steps

1. Rapid convergence of Fourier series⇒ truncation atM0 = M (Y0) andφ ≈ φ̂ for Y > Y0 with

φ̂ (z) = ∑
|n|≤M0

cnκn(y)e(nx)

2. Fourier inversion overzm = xm+ iY, 1−Q < m< Q with Q > M0:

cnκn(Y) =
Q

∑
m=1−Q

φ̂ (zm)e(−nxm)

3. Automorphy ofφ : φ (γz) = v(γ)φ (z) ⇒ φ̂ (z∗m) ≈ φ̂ (zm):

cnκn(Y) ≈
Q

∑
m=1−Q

φ̂ (z∗m)e(−nxm) = ∑
|l |≤M0

Vnlcl

wherez∗m is thepullbackof zm to the fundamental domain ofΓ.

4. Solve the resulting homogeneous system for the coefficients~c =~c(Y,R) ∈ C
2M0+1 using suit-

able normalization e.g.c(1) = 1 to obtain a Hecke normalized newform.

5 Phase 1 (locating eigenvalues)

For an arbitraryR, use two differentY’s, Y1 andY2 and compute~c=~c(Y1,R) and~c′ =~c(Y2,R). If
λ = 1

4 +R2 really is an eigenvalue of∆ then these vectors should be identical (up to some given
error). Locating eigenvalues can thus be done by finding simultaneous zeros of a set:

h j (R) = c(i j)−c′ (i j) , j = 1,2,3

where for examplei1 = 2, i2 = 3 andi3 = 4.

6 Phase 2

Compute more coefficients using ”phase 2”:

c(n) =
∑|n|≤M0

Vnlc(l)

κn(Y)
,

wheren is allowed to be greater thanM0, using successively decreasingY and increasingQ.

Implementation
7 The program

The original implementation of this algorithm in the setting of PSL2(Z) was made by Dennis
Hejhal in the late 80’s and beginning 90’s using FORTRAN77. The current version is imple-
mented in Fortran 90/95 and consist of a package of several Fortran 90/95 modules and programs
interfacing these modules. To work with Maass waveforms, download the filemaasswf.tar.gz,
unzip/tar it and follow the instructions in the readme file. You will then have the program
maasswfwhich can be used to locate eigenvalues (Phase 1) and computemore coefficients
(Phase 2). There is also functionality to produce indata tolcalc if you wish to use the coeffi-
cients to compute L-functions and to produce data files data files which can be plotted with for
example SAGE and pylab. The current version ofmaasswfis limited to Γ = Γ0(N) and real
characters. Further versions will extend this functionality. There is also an ongoing project to
make the Maass waveform programs available through SAGE.
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8 Find eigenvalues

First we need to find an eigenvalue. ConsiderN = 5 and trivial character. We do that by running
a search algorithm:

>./maasswf -find 1 -lvl 5 -ch 1 -Rs 0 -Rf 7
5 0.000 1 3.2642513026365152 1 -1 1.1147E-13
5 0.000 1 4.8937812914384189 1 -1 5.7732E-14
5 0.000 1 4.8937812914384446 1 1 1.2079E-13
5 0.000 1 6.2149037377076759 1 1 3.2863E-14
5 0.000 1 6.2149037377076901 1 -1 1.7764E-14
5 0.000 1 6.5285026052730224 0 1 8.1624E-13

The output is given as a list where each row is
N k χ R µ0 µ1, · · · ,µκ, ε
whereN is the level,k is the weight (here 0)χ is the character (hereχ5 =

( ·
5

)

denoted by 1),R
is the spectral parameter,µ0 = 0 if the corresponding function is even with respect toJ : z 7→ −z
andµ0 = 1 if it is odd. Then follows a listµ1, . . . ,µκ consisting of eigenvalues of Atkin-Lehner
involutions. The last entry is an error estimate. By adding the option

-o testlist.txt

we can print the list directly to the filetestlist.txt.

9 Obtain more coefficients

Suppose that we want to compute a longer list of Fourier coefficients for the last form in the list
above and that we want to use these coefficients inlcalc to compute, for example, zeros of the
corresponding L-function. With the following command:

./maasswf -start 6 -stop 6 -c 10000 -f testlist.txt -lcalc 1

we get the files„lcalc.he.5-0.000-1-3.26425130263651-1-c0-10000.txt“ and
„lcalc.co.5-0.000-1-3.26425130263651-1-c0-10000.txt“ which contains the header and the co-
efficients. By concatenating these files you get a valid inputfile for lcalc.

10 Plot

If we want to make a picture of a Maass waveform from the previous list we simply write

./maasswf -start 1 -stop 1 -f testlist.txt -plot

This produces the file „graph5-0.000-1-6.96387424068007-200x200_-0.50-0.50x0.16-1.01.txt“
and copying this tograph.txtthe following SAGE-code:

from pylab import *
X=MatrixSpace(RR,200)
X=load(’path-to-file/graph.txt’)
q=pcolor(X)
a=gca()
a.set_xticklabels([’-0.5’,’-0.25’,’0’,’0.25’,’0.5’])
a.set_yticklabels([’0.01’,’0.25’,’0.5’,’0.75’,’1.0’])
savefig(’q.png’)

can be used to produce a picture in png-format. The figure in this case is the left figure below.
Since this eigenvalue is rather small (R= 6.96. . .) the figure does not seem very interesting or
„chaotic“ (the plotted functionφ is real-valued, red corresponds to positive and blue to negative
values). To demonstrate the largeλ behavior, the right picture correspondsR≈ 300 (in this
figure I plotted|φ |2 so the dark blue means that|φ |2 is close to zero).


