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Background

1 Definition

Consider the hyperbolic upper half-plakk= {x+iy € C|y > 0} equipped with the metric
ds® = y?(dx?+dy?) and measurdu = y—*dxdy Let " be a co-finite, non co-compact Fucht
sian group, i.e.l' is a discrete subgroup of PSIR) = SL,(R)/{+1} such that the quotient
A =T \H has finite hyperbolic area but is not compact (it has at leastooisp).

A Maass waveform (cusp form) is a square-integrable realy#io function onl" \H which is an

eigenfunction of the Laplace-Beltrami operafos= y? (&?XZZ + g’yzz). l.e. p € C?(H) is said to be
aMaass wavefornf it satisfies the following conditions:

(A+)\)(p(z):0,)\:%r+R2>O, (1)

@(yz) = @(z) Vyel,VzeH, (2)
/ 9|°du < o. (3)
M\H

It Is known that for congruence subgroups a funcipsatisfying 1.-3. is automatically cuspidal
l.e. (x+1iy) — 0 asy — o and has a Fourier expansion

¢(2) = ;OCnKn (y)e(nx)

wherek, (Y) = /YKir (217|n]y) ande(x) = e™.

2 Motivation

The Laplace-Beltrami operatdy can be interpreted as a stationary Schrodinger operator and

Maass waveforms correspond to bound gquantum eigenstateg’.ofhe semi-classical limit
(h — 0) corresponds td — . Since the classical billiard system o#’ is strongly chaotic,
the properties of Maass waveforms and their eigenvalualwisbn for largeA are objects of
Interest in the study of so-called ,quantum chaos".

Although generic Maass waveforms are (seemingly) trardsaatal in their nature, there are
special cases which also has a more number theoreticgbiatation. These special cases, CM-
forms, exists only on congruence subgroups together withtnaial characters and both theit
spectral parameters and Fourier coefficients can be etyplhamputed.

3 Some generalizations of Maass waveforms

If x . — C is a character we can replace (2) by

o(yz2) = x(y) (2 (2')

and in general, ik € R andv: T — C is a multiplier system of weight for " (herel is the
iInverse image of the natural projectionfofn SL,(RR)) we can replace (2) by

o(v2) = iy(@"v(y) 9(2) (27)

and (1) by

(A+A) @(2) =0, A :%+R2>O (17)

wherej a D) (z) = A9z andA = A — iykZ.
We can also loosen up the condition (3) which implies some tfpgrowth-bounds at infinity
(l.e. cuspidality ofp for congruencé if A > 0). The first step would be to allow for polynomia

growth at infinity. This is achieved by for examd#senstein series &;s) which belongs to
the continuous spectrum Af Here

E(zs)=y+¢(s)y °+0(e®), asy—0

for somee > 0. We can also allow exponential growth. LEgt(z) be a polynomial irg = e(z) =
e’z | If @ satisfies (1) and (2) and

9(2) =Py(2+0(e®), asy—o (3")

for somee > 0 we say thatp is aweak Maass waveform

Algorithm

4 The core algorithm consists of four steps

1. Rapid convergence of Fourier sergsruncation aMy = M (Yy) and @ =~ gB forY > Yy with

P2 = 3 cokn(y)e(ny

IN[<Mg

2. Fourier inversion ovegy,, = Xn+1Y, 1 —Q < m< Q with Q > Mo:

Q .
CnKn(Y) = P QCD(Zm)e(—nXm)

VaN

3. Automorphy ofg: @(y2) = V(y) 9(2) = @ (Z) ~ P (zm)

Q
Cakn (Y) = ZQCAD(Z*n)e(_nXm) = Z VhiC
m=1— “‘SMO

wherez. is thepullbackof z, to the fundamental domain 6f

4. Solve the resulting homogeneous system for the coeftiien &(Y,R) ¢ C*Mot! using suit-
able normalization e.g: (1) = 1 to obtain a Hecke normalized newform.

5 Phase 1 (locating eigenvalues)

For an arbitranR, use two differen¥’s, Y; andY, and comput& = C(Y1,R) andC =C(Y,, R). If

A= %1+ R? really is an eigenvalue df then these vectors should be identical (up to some gijen

error). Locating eigenvalues can thus be done by finding Isam@&ous zeros of a set:
hj (R) = C(ij) —C/(ij), j =123

where for example; = 2, i, = 3 andiz = 4.

6 Phase 2

Compute more coefficients using "phase 2”:

c(n) = Zn<K'\:O(\\/(n)IC(I),

wheren is allowed to be greater thawy, using successively decreasMa@nd increasing).

Implementation

/ The program

The original implementation of this algorithm in the saftiof PSL,(Z) was made by Dennis
Hejhal in the late 80’s and beginning 90’s using FORTRAN7he Turrent version is imple-
mented in Fortran 90/95 and consist of a package of sever@dR®0/95 modules and program
Interfacing these modules. To work with Maass waveformsyrdoad the filemaasswf.tar.gz
unzip/tar it and follow the instructions in the readme fileouYwill then have the program
maasswfwhich can be used to locate eigenvalues (Phase 1) and commuuiee coefficients
(Phase 2). There is also functionality to produce indatlzdfr if you wish to use the coeffi-
cients to compute L-functions and to produce data files d&mrhich can be plotted with for
example SAGE and pylab. The current versiomudasswiis limited tol" = Io(N) and real
characters. Further versions will extend this functidgalllhere is also an ongoing project tc
make the Maass waveform programs available through SAGE.
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8 FiInd eigenvalues

First we need to find an eigenvalue. ConsidNet 5 and trivial character. We do that by running
a search algorithm:

> [maasswf -find 1 -lIvl 5 -ch1-Rs 0 -Rf 7

5 0.000 1 3.2642513026365152 1 -1 1.1147E- 13
5 0.000 1 4.8937812914384189 1 -1 5. (7132E-14
5 0.000 1 4.8937812914384446 1 1 1. 2079E- 13
5 0.000 1 6. 214903737/7076739 1 1 3. 2863E-14
5 0.000 1 6. 2149037377076901 1 -1 1. 7764E-14
5 0.000 1 6. 5285026052/730224 0 1 8. 1624E- 13

The output is given as a list where each row is

N K X R Ho Hi, -, Hk, &
whereN is the level k is the weight (here O is the character (heng; = (z) denoted by 1)R

IS the spectral parametery; = O if the corresponding function is even with respecl t@+— —z
andpuy = 1ifitis odd. Then follows a lisjuy, ..., Ux consisting of eigenvalues of Atkin-Lehnef
iInvolutions. The last entry is an error estimate. By addimgdption

-0 testlist.txt
we can print the list directly to the filestlist.txt.

O Obtain more coefficients

Suppose that we want to compute a longer list of Fourier aneffis for the last form in the list
above and that we want to use these coefficientsalt to compute, for example, zeros of the
corresponding L-function. With the following command:

./ maasswf -start 6 -stop 6 -c 10000 -f testlist.txt ~-lcalc 1

we get the fileglcalc.he.5-0.000-1-3.26425130263651-1-c0-10000.&d
,lcalc.co.5-0.000-1-3.26425130263651-1-c0-10000.twhich contains the header and the co-
efficients. By concatenating these files you get a valid iigifor Icalc.

10 Plot

If we want to make a picture of a Maass waveform from the previest we simply write
./ maasswf -start 1 -stop 1 -f testlist.txt -plot

This produces the filegraph5-0.000-1-6.96387424068007-200x200_-0.50-0.3@%1.01.txt"
and copying this tgraph.txtthe following SAGE-code:

from pylab I mport =

X=Mat ri xSpace( RR, 200)

X=l oad(’ path-to-file/graph.txt’)

g=pcol or ( X

a=gca()

a.set xticklabels([’-0.5,"-0.25","0",70.25",70.5"])
a.set _yticklabels([’0.01’,70.25",70.5,70.75,71.0"])
savefig(’g.png’ )

can be used to produce a picture in png-format. The figurelsnctse Is the left figure below.
Since this eigenvalue is rather small£ 6.96...) the figure does not seem very interesting ¢r
,chaotic“ (the plotted functiorp is real-valued, red corresponds to positive and blue totnega
values). To demonstrate the largebehavior, the right picture corresponsx 300 (in this
figure | plotted|@|° so the dark blue means tHat* is close to zero).
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