Mod ℓ representations associated to newforms

Theorem (Deligne). For a newform $f = \sum a_n q^n \in S_k(\Gamma_1(N))$ with character ε , a prime number ℓ and a prime $\lambda \mid \ell$ of the coefficient ring of f, there exists a two-dimensional representation

$$\overline{\rho}_{f,\lambda}$$
: Gal $(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{F}_{\lambda})$

that is unramified outside $N\ell$ and satisfies

charpol(
$$\overline{\rho}_{f,\lambda}(\operatorname{Frob}_p)$$
) $\equiv x^2 - a_p x + \varepsilon(p) p^{k-1}$

for all primes $p \nmid N\ell$.

Assume $k \leq \ell + 1$ and that $\overline{\rho}_{f,\lambda}$ is absolutely irreducible. Then one can find $\overline{
ho}_{f,\lambda}$ as the action of ${
m Gal}(\overline{\mathbb Q}/\mathbb Q)$ on a subspace of $J_1(N')(\overline{\mathbb{Q}})[\ell]$ with N' = N for k = 2 and $N' = N\ell$ otherwise.

MAGMA computations

Open MAGMA and attach the source with intrinsics:

> Attach("modrep.m");

Choose your favourite cusp form, e.g.

$$\Delta = q \prod (1-q^n)^{24} = \sum \tau(n) q^n \in S_{12}(\operatorname{SL}_2(\mathbb{Z})).$$

> S12 := CuspForms(GammaO(1), 12); > Delta := Newform(S12, 1);

Choose a prime ℓ for the mod ℓ representation, and enter it as an ideal of the coefficient ring of Δ , e.g. $\ell = 13$.

> L := ideal< Integers() | 13 >;

Note that $\rho = \overline{\rho}_{\Delta,\ell} : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{F}_\ell)$ factors through the number field $K_{\ell} = \overline{\mathbb{Q}}^{\ker(\rho)}$:

 $\overline{\rho}_{\Lambda,\ell}$: Gal $(\overline{\mathbb{Q}}/\mathbb{Q}) \to$ Gal $(K_{\ell}/\mathbb{Q}) \hookrightarrow$ GL $_2(\mathbb{F}_{\ell})$.

A polynomial with splitting field K_{ℓ} can be computed as follows:

> pol := ComputeBigGLPolynomial(Delta, L);

This polynomial has degree $\ell^2 - 1$; the action of $Gal(K_{\ell}/\mathbb{Q})$ on its roots is compatible with the action of $\operatorname{im}
ho \subset \operatorname{GL}_2(\mathbb{F}_\ell)$ on $\mathbb{F}_{\ell}^2 - \{0\}$. The computation makes use of numerical approximations of ℓ -torsion points in $J_1(\ell)$ over \mathbb{C} .

Smaller polynomials

Instead of ρ , we can consider the *projectivised* representation $\tilde{\rho}$ The computations can also be used to produce polynomials that that is obtained by composing ρ with $GL_2(\mathbb{F}_{\ell}) \twoheadrightarrow PGL_2(\mathbb{F}_{\ell})$. The have certain prescribed Galois group. In $S_2(\Gamma_0(137))$ there is representation $\tilde{\rho}$ factors through a number field K'_{ℓ} : a newform f for which $[K_f:\mathbb{Q}] = 4$ and 2 is inert in K_f . By computing several coefficients at prime indices of f modulo 2 one $\tilde{\rho}: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{Gal}(K'_{\ell}/\mathbb{Q}) \hookrightarrow \operatorname{PGL}_2(\mathbb{F}_{\ell}).$ can see that all elements of \mathbb{F}_{16} occur as trace of $ho=\overline{
ho}_{\,f,(2)}$ so the field $K = \overline{\mathbb{Q}}^{\ker(\rho)}$ has Galois group $SL_2(\mathbb{F}_{16})$. We can compute a polynomial P with splitting field K'_{ℓ} :

> pol := ComputePGLPolynomial(Delta, L); This polynomial has degree $\ell + 1$; the action of $Gal(K'_{\ell}/\mathbb{Q})$ on its roots is compatible with the action of $\operatorname{im} \tilde{\rho} \subset \operatorname{PGL}_2(\mathbb{F}_\ell)$ on $\mathbb{P}^1(\mathbb{F}_\ell)$ The intrinsic ComputePGLPolynomial does a reduction of coefficients as its final step.

In more complicated cases, we may wish to skip this automatic reduction and do it by hand afterwards:

> bigpol := ComputeBigPGLPolynomial(Delta, L);

Verification

The computations do not give a *proven* output. We can use builtin procedures of MAGMA for several verifications, for instance the Galois group:

```
> G, R, S := GaloisGroup( pol );
> GaloisProof( pol, S );
true
> IsIsomorphic( G, PGL(2,13) );
true
Also, we can compute the discriminant of the number field defined
by P:
```

```
> OM := MaximalOrder( pol );
```

```
> Factorisation( Discriminant(OM) );
[ <13, 23> ]
```

Reference Thanks to the fact that Serre's conjecture has been proven, one can now use these verifications to show that P really belongs to [B] J. G. Bosman, On the computation of Galois representations associated to a representation isomorphic to $\tilde{\rho}$, see [B]. level one modular forms, preprint, arXiv reference 0710.1237.

```
^11 + 169*X^10 +
7 + 494 * X^{6} +
X^3 + 169 \times X^2 +
```

Another example

```
> S := CuspForms( GammaO(137), 2 );
> f := Newform( S, 1 );
> Kf := BaseRing( Parent(f) );
> OKf := MaximalOrder( Kf );
> two := Decomposition( OKf, 2 )[1][1];
> pol := ComputePGLPolynomial( f, two ); pol;
X^17 - 5*X^16 + 12*X^15 - 28*X^14 + 72*X^13 -
 132*X^12 + 116*X^11 - 74*X^9 + 90*X^8 - 28*X^7 -
 12 \times X^{6} + 24 \times X^{5} - 12 \times X^{4} - 4 \times X^{3} - 3 \times X - 1
> G, R, S := GaloisGroup( pol );
> GaloisProof( pol, S );
true
> IsIsomorphic( G, SL(2,16) );
true
```

An explicit example of a polynomial with Galois group $SL_2(\mathbb{F}_{16})$ was previously unknown.

Current limitations of the code

Currently we can compute polynomials for newforms in $S_k(\Gamma_1(N))$ for N = 1 and $k \le \ell + 1$ arbitrary or k = 2 and N prime. The code may sometimes fail in cases where the representation is easy to compute by hand, e.g. when it can be found inside the ℓ -torsion of an elliptic curve. In very complicated cases one may wish to break up the computation in parts. For this, please have a look in the source code of ComputeBigPGLPolynomial. For newforms f of level one, polynomials attached to $ilde{
ho}_{f,\ell}$ have been computed for $\ell \leq 23$, see [B]. Several Galois groups have been explicitly realised, the most complicated ones are $SL_2(\mathbb{F}_{32})$ and $PSL_2(\mathbb{F}_{49})$.