Polynomials for mod ℓ representations in MAGMA

Johan Bosman, Universiteit Leiden, The Netherlands

Mod ℓ representations associated to newforms

Theorem (Deligne). For a newform $f=\sum a_{n} q^{n} \in S_{k}\left(\Gamma_{1}(N)\right)$ with character ε, a prime number ℓ and a prime $\lambda \mid \ell$ of the coefficient ring of f, there exists a two-dimensional representation

$$
\bar{\rho}_{f, \lambda}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{\lambda}\right)
$$

that is unramified outside $N \ell$ and satisfies

$$
\operatorname{charpol}\left(\bar{\rho}_{f, \lambda}\left(\operatorname{Frob}_{p}\right)\right) \equiv x^{2}-a_{p} x+\varepsilon(p) p^{k-1}
$$

for all primes $p \nmid N \ell$.
Assume $k \leq \ell+1$ and that $\bar{\rho}_{f, \lambda}$ is absolutely irreducible. Then one can find $\bar{\rho}_{f, \lambda}$ as the action of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ on a subspace of $J_{1}\left(N^{\prime}\right)(\overline{\mathbb{Q}})[\ell]$ with $N^{\prime}=N$ for $k=2$ and $N^{\prime}=N \ell$ otherwise.

MAGMA computations

Open MAGMA and attach the source with intrinsics:
> Attach("modrep.m");
Choose your favourite cusp form, e.g.

$$
\Delta=q \prod\left(1-q^{n}\right)^{24}=\sum \tau(n) q^{n} \in S_{12}\left(\operatorname{SL}_{2}(\mathbb{Z})\right)
$$

> S12 := CuspForms(Gamma0(1), 12);
> Delta := Newform(S12, 1);
Choose a prime ℓ for the $\bmod \ell$ representation, and enter it as an ideal of the coefficient ring of Δ, e.g. $\ell=13$
> L := ideal< Integers() | 13 >;
Note that $\rho=\bar{\rho}_{\Delta, \ell}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$ factors through the number field $K_{\ell}=\overline{\mathbb{Q}}^{\operatorname{ker}(\rho)}$

$$
\bar{\rho}_{\Delta, \ell}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \operatorname{Gal}\left(K_{\ell} / \mathbb{Q}\right) \hookrightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) .
$$

A polynomial with splitting field K_{ℓ} can be computed as follows: > pol := ComputeBigGLPolynomial(Delta, L);
This polynomial has degree $\ell^{2}-1$; the action of $\operatorname{Gal}\left(K_{\ell} / \mathbb{Q}\right)$ on its roots is compatible with the action of $\operatorname{im} \rho \subset \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$ on $\mathbb{F}_{\ell}^{2}-\{0\}$. The computation makes use of numerical approximations of ℓ-torsion points in $J_{1}(\ell)$ over \mathbb{C}.

Smaller polynomials

Instead of ρ, we can consider the projectivised representation $\tilde{\rho}$ that is obtained by composing ρ with $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) \rightarrow \mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)$. The representation $\tilde{\rho}$ factors through a number field K_{ℓ}^{\prime} :

$$
\tilde{\rho}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \operatorname{Gal}\left(K_{\ell}^{\prime} / \mathbb{Q}\right) \hookrightarrow \operatorname{PGL}_{2}\left(\mathbb{F}_{\ell}\right)
$$

We can compute a polynomial P with splitting field K_{ℓ}^{\prime} :
> pol := ComputePGLPolynomial(Delta, L);
This polynomial has degree $\ell+1$; the action of $\operatorname{Gal}\left(K_{\ell}^{\prime} / \mathbb{Q}\right)$ on its roots is compatible with the action of $\operatorname{im} \tilde{\rho} \subset \operatorname{PGL}_{2}\left(\mathbb{F}_{\ell}\right)$ on $\mathbb{P}^{1}\left(\mathbb{F}_{\ell}\right)$ The intrinsic ComputePGLPolynomial does a reduction of coef ficients as its final step.
> pol;
X^14 + 7*X^13 + 26*X^12 + 78*X^11 + 169*X^10 +
$52 * X^{\wedge} 9-702 * X^{\wedge} 8-1248 * X^{\wedge} 7+494 * X^{\wedge} 6+$
$2561 * X^{\wedge} 5+312 * X^{\wedge} 4-2223 * X^{\wedge} 3+169 * X^{\wedge} 2+$
506*X - 215
In more complicated cases, we may wish to skip this automatic reduction and do it by hand afterwards
> bigpol := ComputeBigPGLPolynomial(Delta, L);

Verification

The computations do not give a proven output. We can use builtin procedures of MAGMA for several verifications, for instance the Galois group:
> G, R, S := GaloisGroup(pol);
> GaloisProof(pol, S);
true
> IsIsomorphic(G, PGL $(2,13)$);
true
Also, we can compute the discriminant of the number field defined by P :
> OM := MaximalOrder(pol);
> Factorisation(Discriminant(OM));
[< 13, 23>]
Thanks to the fact that Serre's conjecture has been proven, one can now use these verifications to show that P really belongs to a representation isomorphic to $\tilde{\rho}$, see $[B]$

Another example

The computations can also be used to produce polynomials that have certain prescribed Galois group. In $S_{2}\left(\Gamma_{0}(137)\right)$ there is a newform f for which $\left[K_{f}: \mathbb{Q}\right]=4$ and 2 is inert in K_{f}. By computing several coefficients at prime indices of f modulo 2 one can see that all elements of \mathbb{F}_{16} occur as trace of $\rho=\bar{\rho}_{f,(2)}$ so the field $K=\overline{\mathbb{Q}}^{\mathrm{ker}(\rho)}$ has Galois group $\mathrm{SL}_{2}\left(\mathbb{F}_{16}\right)$.
> S := CuspForms(Gamma0(137), 2);
> f := Newform(S, 1);
> Kf := BaseRing(Parent(f))
> OKf := MaximalOrder(Kf);
> two := Decomposition(OKf, 2) [1][1];
> pol := ComputePGLPolynomial(f, two); pol;
X^17 - 5*X^16 + 12*X^15-28*X^14 + 72*X^13 -
$132 * \mathrm{X}^{\wedge} 12+116 * \mathrm{X}^{\wedge} 11-74 * \mathrm{X}^{\wedge} 9+90 * \mathrm{X}^{\wedge} 8-28 * \mathrm{X}^{\wedge} 7-$
$12 * X^{\wedge} 6+24 * X^{\wedge} 5-12 * X^{\wedge} 4-4 * X \wedge 3-3 * X-1$
> G, R, S := GaloisGroup (pol);
> GaloisProof(pol, S):
true
> IsIsomorphic(G, SL(2,16));
true
An explicit example of a polynomial with Galois group $\mathrm{SL}_{2}\left(\mathbb{F}_{16}\right)$ was previously unknown.

Current limitations of the code

Currently we can compute polynomials for newforms in $S_{k}\left(\Gamma_{1}(N)\right)$ for $N=1$ and $k \leq \ell+1$ arbitrary or $k=2$ and N prime. The code may sometimes fail in cases where the representation is easy to compute by hand, e.g. when it can be found inside the ℓ-torsion of an elliptic curve. In very complicated cases one may wish to break up the computation in parts. For this, please have a look in the source code of ComputeBigPGLPolynomial. For newforms f of level one, polynomials attached to $\tilde{\rho}_{f, \ell}$ have been computed for $\ell \leq 23$, see $[B]$. Several Galois groups have been explicitly realised, the most complicated ones are $\mathrm{SL}_{2}\left(\mathbb{F}_{32}\right)$ and $\mathrm{PSL}_{2}\left(\mathbb{F}_{49}\right)$.

Reference

[B] J. G. Bosman, On the computation of Galois representations associated to level one modular forms, preprint, arXiv reference 0710.1237

